
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3696410.3714649
.

.

RESEARCH-ARTICLE

TensorJSFuzz: Effective Testing of Web-Based Deep Learning
Frameworks via Input-Constraint Extraction

LILI QUAN, Tianjin University, Tianjin, China
.

XIAOFEI XIE, Singapore Management University, Singapore City, Singapore
.

QIANYU GUO, Beijing Institute of Technology, Beijing, China
.

LINGXIAO JIANG, Singapore Management University, Singapore City, Singapore
.

SEN CHEN, Nankai University, Tianjin, China
.

JUNJIE WANG, Tianjin University, Tianjin, China
.

View all
.

.

Open Access Support provided by:
.

Tianjin University
.

Beijing Institute of Technology
.

Singapore Management University
.

Nankai University
.

PDF Download
3696410.3714649.pdf
01 February 2026
Total Citations: 0
Total Downloads: 3476
.

.

.

.

Published: 28 April 2025
.

.

Citation in BibTeX format
.

.

WWW '25: The ACM Web Conference
2025
April 28 - May 2, 2025
Sydney NSW, Australia
.

.

Conference Sponsors:
SIGWEB

WWW '25: Proceedings of the ACM on Web Conference 2025 (April 2025)
hps://doi.org/10.1145/3696410.3714649

ISBN: 9798400712746

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3696410.3714649
https://dl.acm.org/doi/10.1145/3696410.3714649
https://dl.acm.org/doi/10.1145/contrib-99659671940
https://dl.acm.org/doi/10.1145/institution-60019533
https://dl.acm.org/doi/10.1145/contrib-99659314797
https://dl.acm.org/doi/10.1145/institution-60018933
https://dl.acm.org/doi/10.1145/contrib-99659502116
https://dl.acm.org/doi/10.1145/institution-60016835
https://dl.acm.org/doi/10.1145/contrib-81330492573
https://dl.acm.org/doi/10.1145/institution-60018933
https://dl.acm.org/doi/10.1145/contrib-99659033476
https://dl.acm.org/doi/10.1145/institution-60018038
https://dl.acm.org/doi/10.1145/contrib-99659433519
https://dl.acm.org/doi/10.1145/institution-60019533
https://dl.acm.org/doi/10.1145/3696410.3714649
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60019533
https://dl.acm.org/doi/10.1145/institution-60016835
https://dl.acm.org/doi/10.1145/institution-60018933
https://dl.acm.org/doi/10.1145/institution-60018038
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3696410.3714649&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/thewebconf
https://dl.acm.org/conference/thewebconf
https://dl.acm.org/sig/sigweb
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696410.3714649&domain=pdf&date_stamp=2025-04-22

TensorJSFuzz: Effective Testing of Web-Based Deep Learning
Frameworks via Input-Constraint Extraction

Lili Quan
∗

College of Intelligence and

Computing

Tianjin University

Tianjin, China

Xiaofei Xie

Singapore Management

University

Singapore

Qianyu Guo

Zhongguancun Laboratory

Beijing, China

Lingxiao Jiang

Singapore Management

University

Singapore

Sen Chen
†

College of Cryptology and

Cyber Science

Nankai University

Tianjin, China

Junjie Wang

College of Intelligence and

Computing

Tianjin University

Tianjin, China

Xiaohong Li
†

College of Intelligence and

Computing

Tianjin University

Tianjin, China

Abstract
As web applications grow in popularity, developers are increasingly

integrating deep learning (DL) models into these environments.

Web-based DL frameworks (e.g., TensorFlow.js) are essential for

building and deploying such applications. Therefore, ensuring the

quality of these frameworks is critical. While extensive testing ef-

forts have been made for native DL frameworks such as TensorFlow

and PyTorch, web-based DL frameworks have not yet undergone

systematic testing. A key challenge is generating syntactically and

semantically valid inputs while designing effective test oracles for

web environments. To address this, we introduce TensorJSFuzz, a

novel method for testing web-based DL frameworks. To ensure

input quality, TensorJSFuzz extracts constraints directly from the

source code of DL operators. By leveraging Large Language Models

(e.g., ChatGPT) to understand the code and extract input constraints,

TensorJSFuzz performs type-aware random generation coupled

with dependency-aware refinement to create high-quality test in-

puts. These inputs are then subjected to differential testing across

various backends, including CPU, TensorFlow, Wasm, and WebGL.

Our experimental results show that TensorJSFuzz outperforms all

baselines in generating valid inputs and identifying bugs. In partic-

ular, TensorJSFuzz successfully detected 92 bugs, with 30 already

confirmed or fixed by developers, demonstrating its effectiveness

in improving the robustness of web-based DL frameworks.

CCS Concepts
• Security and privacy → Web application security.

∗
This work was done during the author’s visit to Singapore Management University.

†
Sen Chen (tigersenchen@163.com) and Xiaohong Li (xiaohongli@tju.edu.cn) are the

corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’25, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1274-6/25/04

https://doi.org/10.1145/3696410.3714649

Keywords
Web-based Deep Learning, Fuzzing, Large Language Model

ACM Reference Format:
Lili Quan, Xiaofei Xie, Qianyu Guo, Lingxiao Jiang, Sen Chen, Junjie Wang,

and Xiaohong Li. 2025. TensorJSFuzz: Effective Testing of Web-Based Deep

Learning Frameworks via Input-Constraint Extraction. In Proceedings of
the ACM Web Conference 2025 (WWW ’25), April 28-May 2, 2025, Sydney,
NSW, Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3696410.3714649

1 Introduction
Deep learning (DL) has gained widespread application in diverse

fields, including image classification [24, 26], natural language pro-

cessing [19, 38], and speech recognition [16, 20]. Traditionally, DL

models have been deployed using native deep learning frameworks

like TensorFlow and PyTorch, which are optimized for desktop and

server environments. However, with web applications increasingly

simplifying cross-platform portability issues and gaining popularity,

developers are integrating DL models into web applications more

often [22, 29, 32]. Web-based DL frameworks (e.g., TensorFlow.js)

are crucial for the development and deployment of such applica-

tions, offering a wide array of functional operators, and allowing

developers to deploy DL models directly within web browsers.

The quality and reliability of these web-based DL frameworks

are paramount, as they directly impact the overall performance and

dependability of web-based DL models and applications. Unlike

their native counterparts, web-based frameworks are constrained

by the inherent limitations of the browser environment, such as

restricted access to memory and hardware accelerators. To mitigate

these constraints, web-based DL frameworks employ a range of ac-

celerationmechanisms, includingWebAssembly andWebGL, which

introduce new challenges for testing DL frameworks in the web en-

vironment. Compared to the testing of native DL frameworks, test-

ing web-based frameworks must account for the variability of web

environments and code styles. These include browser implementa-

tions, hardware variability, and the intricacies of web technologies

like WebAssembly, which presents both a performance benefit and

a source of potential bugs. As a result, existing DL fuzzers designed

for native DL frameworks cannot be directly applied to web-based

frameworks and may struggle to retain their original effectiveness.

3405

https://doi.org/10.1145/3696410.3714649
https://doi.org/10.1145/3696410.3714649
https://doi.org/10.1145/3696410.3714649

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Lili Quan et al.

Function Signature（Type Information）
Checking Code

（Value and Dependency Constraints）

Invoking Kernel Function

CPU Wasm WebGL TensorflowBackend

Operator
Function

Figure 1: The code structure of DL operator in TensoFlow.js

A key challenge in testing web-based frameworks is generating

high-quality test cases that thoroughly explore the logic of core

APIs. Specifically, DL operators (or APIs) often require inputs in the

form of high-dimensional tensors with complex interdependencies.

As a result, randomly generated inputs frequently fail the opera-

tor’s validation checks, limiting their ability to effectively test core

functionality. To address this, FreeFuzz [37] mines test cases from

open-source repositories. DocTer [39] uses rule-based approaches

to collect constraints from API function descriptions in the docu-

mentation. ACETest [34] specifically collects constraints from C++

code. However, these approaches often struggle to generate effec-

tive test cases due to unclear constraints, missing or inaccurate API

descriptions, or being tailored for native DL frameworks.

To address these challenges, we propose TensorJSFuzz, the first

fuzzer specifically designed for web-based DL frameworks, such as

TensorFlow.js. As shown in Figure 1, a typical web-based operator

consists of three key components: the function signature, input
validation (checking code), and a backend-specific kernel function.
Our goal is to generate inputs that bypass the validation checks and

thoroughly test the kernel function. To achieve this, TensorJSFuzz

infers the parameter types and the constraints on them, which are

critical for generating valid and effective test inputs.

Specifically, TensorJSFuzz begins by analyzing the Abstract Syn-

tax Tree (AST) [30] of the function signature to extract parameter

type information. Next, to identify dependency constraints between

parameters in the validation checks, TensorJSFuzz leverages the

capabilities of Large Language Models (LLMs) [13], utilizing their

understanding of code through in-context learning to extract these

constraints. Based on the inferred types and constraints, we design

a heuristic-based approach for input generation, which includes

type-aware random generation and dependency-aware input refine-

ment. To account for the multiple backend implementations used by

web-based frameworks, TensorJSFuzz also incorporates differential

testing across various backends (as shown in Figure 1), making that

inputs not only bypass validation checks but also trigger potential

inconsistencies between different backends.

We evaluated TensorJSFuzz on TensorFlow.js, where it success-

fully extracted 2,046 constraints from 187 selected operators. These

constraints included 1,426 type constraints and 620 dependency con-

straints. To assess the effectiveness of TensorJSFuzz, we compared

it against three representative baselines: a random input gener-

ator (Random), a native DL fuzzer (DocTer), and an SMT-based

approach (TensorJSFuzz-SMT). The experimental results show that

the TensorJSFuzz significantly outperforms the baselines in gener-

ating valid inputs and identifying bugs. Specifically, TensorJSFuzz

generated 71.83% valid inputs, compared to 36.05% for Random,

38.79% for DocTer, and 62.12% for TensorJSFuzz-SMT. Additionally,

TensorJSFuzz identified 64 unique bugs that neither Random nor

Function Signature
（Type Information）

Checking Code
（Value and Dependency

Constraints）

Invoking Kernel
Function

 const res = ENGINE.runKernel(Conv2D, inputs as unknown as
 NamedTensorMap, attrs as unknown as NamedAttrMap) as T;
 return res;}

function conv2d_<T extends Tensor3D|Tensor4D>(
 x: T|TensorLike, filter: Tensor4D|TensorLike,
 strides: [number, number]|number,
 pad: 'valid'|'same'|number|conv_util.ExplicitPadding,
 dataFormat: 'NHWC'|'NCHW' = 'NHWC',
 dilations: [number, number]|number = [1, 1],
 dimRoundingMode?: 'floor'|'round'|'ceil'): T {

conv_util.checkPadOnDimRoundingMode('conv2d', pad, dimRoundingMode);
const inDepth = dataFormat === 'NHWC' ? x4D.shape[3] : x4D.shape[1];
util.assert(inDepth === $filter.shape[2],
 () => `Error in conv2d: depth of input (${inDepth}) must match ` +
 `input depth for filter ${$filter.shape[2]}.`);
 ...

Figure 2: The source code of tf.conv2d

DocTer were able to detect. In total, TensorJSFuzz uncovered 92

bugs, with 30 of them already confirmed or fixed.

In summary, this paper makes the following contributions:

• We present TensorJSFuzz, the first testing tool specifically de-

signed for web-based DL frameworks, representing a significant

advancement in ensuring the reliability and robustness of web-

based DL frameworks.

• We propose a novel approach to extract type and dependency con-

straints directly from the source code, addressing the limitations

of existing methods. Additionally, we introduce a constraint-

aware test generation method that is lightweight and highly

effective.

• We demonstrate the effectiveness of TensorJSFuzz through com-

prehensive comparative experiments with existing DL fuzzers.

TensorJSFuzz successfully uncovered 92 bugs, with 30 already

confirmed or fixed.

• The source code and experimental data are publicly available

at [8] for further research and replication.

2 Background and Motivation
2.1 Preliminary
TensorFlow.js [18] is a leading web-based DL framework, enabling

seamless integration of DLmodels into web applications. It provides

a versatile platform for developing and deploying models directly

in web browsers. TensorFlow.js supports model training and infer-

ence on diverse backends, providing flexibility and performance

optimizations for different environments. The library comprises

various backends, including CPU [4], WebGL [7], Wasm [6], and

the TensorFlow [5]. Each backend caters to different hardware and

execution contexts, contributing to TensorFlow.js’s adaptability and

widespread use in web-based deep learning applications.

2.2 Motivation Example
The key insight of our approach that extracts constraints from

source code is from the structured code in web-based DL frame-

works. As illustrated in Figure 2, the source code of the tf.conv2d
operator comprises three key components: the function signature,

checking code, and the invocation of the kernel function.

The function signature explicitly defines the types for each pa-

rameter. For instance, the parameter x is designated as Tensor3D or

Tensor4D, indicating a tensor of rank 3 or 4. The checking code em-

ploys assertions or functions to check the syntactical and semantical

validity of parameters. A notable example from the checking code

in Figure 2 is the dependency between the parameters dataFormat,
x, and filter. If dataFormat is NHWC, then x.shape[3] must match

filter.shape[2]. Otherwise, x.shape[1] should equal filter.shape[2].

3406

TensorJSFuzz: Effective Testing of Web-Based Deep Learning Frameworks via Input-Constraint Extraction WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Prompt
Constructor

<task description>
+ <source code>

AST Parser

Test Oracle

Differential Testing
CPU Wasm

Tensorflow WebGL

Constraint Extraction Input Generation

Type Information
Extractor

Dependency
Constraint Extractor

AST

Type-aware
Generator

Dependency-
aware Adjustment

Operator
Source Code

Valid
Input

LLM

Parameter
Constraints

AddressSanitizer

Crash

. structure

. dtype
. rank
. shape

. enum value

. value range

. dependency

function
signature

function
body

Figure 3: Overview of TensorJSFuzz

3 Approach
Figure 3 presents an overview of TensorJSFuzz, which contains

three stages. The initial stage involves constraint extraction, where

TensorJSFuzz extracts two types of constraints from a DL operator’s

source code: (1) type information for each parameter, derived from

the function signature’s abstract syntax tree, and (2) dependency

constraints, extracted from the function body using LLMs. The type

information includes the structure, data type, rank, and enumerated

values of each parameter, while dependency constraints cover the

permissible range of parameter values and their interdependencies.

Based on the constraints, TensorJSFuzz aims to generate valid

inputs. Initially, TensorJSFuzz randomly generates inputs that align

with the extracted type information, ensuring type consistency.

These inputs are then refined and adjusted to meet the dependency

constraints, significantly enhancing the likelihood of input validity.

TensorJSFuzz further employs three test oracles to identify vari-

ous bug types, including crash, memory-related, and wrong compu-

tation bugs. Specifically, wrong computation bugs are detected by

differential testing across different backends. For memory-related

bug detection, particularly in the Wasm backend, TensorJSFuzz

utilizes AddressSanitizer.

3.1 Constraint Extraction
3.1.1 Type Information Extraction. The function signature pro-

vides detailed syntax information for each input parameter, such

as the data structure, data type, and enumerated values, which can

be used to constrain the input generation. Therefore, we design a

type information extractor to extract such type information from

the function signature. Specifically, for each DL operator, the type

information extractor first parses its function signature into an

abstract syntax tree (AST). This AST is a tree with multiple typed

nodes, where the root node represents the operator function and

the ‘parameters’ node encapsulates details about all parameters of

the operator. Each child node of the node ‘parameters’ represents

a parameter. Within each parameter node, there is a ‘type’ node

storing all the syntax details. The type information extractor subse-

quently retrieves syntax information from the ‘type’ node for each

parameter and refines it into our type information representation.

To facilitate the subsequent input generation phase, we categorize

the type-related constraints into the following five types:

• structure: the data structure that stores a collection of values for

the input parameter, such as tuple, array, and tensor.

• rank: the number of dimensions of a tensor/array.

• shape: the shape of the tensor/array.
• dtype: the data type, such as number, boolean, int, and string, of

the parameter or the element type of the tensor/array.

• enum value: a set of valid values.

Figure 8 shows an example of extracting type information for the

parameters of tf.conv2d operator. The type information extractor

parses it into an abstract syntax tree (i.e., AST in Figure 8), where

the ‘parameters’ node and ‘type’ node are marked as the blue box

and green box, respectively. Following this, the extractor acquires

syntax information from the ‘type’ node for each parameter and

further refines it into type information based on categories. For

example, the obtained syntax information of parameter strides is
“[number, number]|number”, and the refined type information are

{structure:[Array, number], dtype: number, shape: [2]}.

3.1.2 Dependency Constraint Extraction. To ensure input validity,

knowing only the type information is insufficient, as the constraints,

such as value ranges and inter-parameter dependencies, can have

high influence in the input validity. For instance, parameters often

have specific valid value ranges. Moreover, their data type, rank, or

values may depend on other parameters. Such detailed constraints

are discernible only through an in-depth analysis of the source code

(i.e., the checking code). To capture this information, we introduce

a specialized extractor for extracting information about the value

range and parameter dependencies from the checking code.

Considering the complexity of code like tensor calculations and

diverse conditional checks, we leverage LLMs, known for their ex-

ceptional comprehension in both natural language processing and

code-related tasks [10, 11, 14, 28, 41]. In this work, ChatGPT [1]

was chosen for constraint extraction using a one-shot prompting

strategy. Figure 9 shows an example of this approach, where the

prompt includes a task description and specific example. This ex-

ample illustrates the expected output relative to the task.

Table 1 presents a selection of constraint examples extracted by

ChatGPT, covering four distinct types. The second row, for example,

highlights a rank constraint, specifying that the rank of the indices
parameter must be greater than or equal to the batchDims param-

eter value in the tf.gather operator. The third row illustrates a

shape constraint, where the fourth dimension of x must match the

third dimension of filter. Additionally, dtype and value constraints
are shown in the fourth and fifth rows, respectively, indicating

dependencies of one parameter’s dtype or value on another.

3.2 Input Generation
To generate diverse inputs that conform to the constraints. A direct

approach would involve using a Satisfiability Modulo Theories

(SMT) [15] solver to compute inputs on the extracted constraints.

However, existing works [27, 34, 36] have highlighted limitations of

SMT solvers in generating diverse inputs, as they typically produce

boundary values and face challenges in solving constraints related

3407

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Lili Quan et al.

Table 1: Examples of constraints extracted by ChatGPT

Type Opterator Constraint

rank tf.gather indices_rank>=batchDims_value

shape tf.conv3d x_shape[4]==filter_shape[3]

dtype tf.add a_dtype==b_dtype

value tf.conv3d strides_value==1 or dilations_value==1

Algorithm 1: Type-aware Input Generation
Input :T: Type information of all parameters of operator

Output :𝑅𝐼 : Randomly generated inputs

1 P := getParameters(T) ;
2 for 𝑝 ∈ P do
3 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 := randomSelect(T → 𝑝 → 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) ;
4 if isAtomicType(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) then
5 if hasEnumValue(T → 𝑝) then
6 𝑅𝐼 → 𝑝 := randomSelect(T → 𝑝 → 𝑒𝑛𝑢𝑚_𝑣𝑎𝑙𝑢𝑒) ;
7 else
8 𝑑𝑡𝑦𝑝𝑒 := randomSelect(T → 𝑝 → 𝑑𝑡𝑦𝑝𝑒) ;
9 𝑅𝐼 → 𝑝 := randomGenerate(𝑑𝑡𝑦𝑝𝑒) ;

10 else
11 𝑟𝑎𝑛𝑘 := randomSelect(T → 𝑝 → 𝑟𝑎𝑛𝑘) ;
12 𝑠ℎ𝑎𝑝𝑒 := randomSelect(T → 𝑝 → 𝑠ℎ𝑎𝑝𝑒) ;
13 𝑑𝑡𝑦𝑝𝑒 := randomSelect(T → 𝑝 → 𝑑𝑡𝑦𝑝𝑒) ;
14 𝑅𝐼 → 𝑝 := generate(𝑟𝑎𝑛𝑘, 𝑠ℎ𝑎𝑝𝑒,𝑑𝑡𝑦𝑝𝑒) ;

15 return 𝑅𝐼 ;

to tensors, such as the high costs associated with solving constraints

on a tensor’s value. Therefore, we developed a lightweight and

heuristic-based method to generate valid inputs, which unfolds

in two primary steps: (1) type-aware input generation, and (2)

dependency-aware input adjustments.

3.2.1 Type-aware Input Generation. Leveraging the type informa-

tion extracted from the function signature (see Figure 8), TensorJS-

Fuzz initiates the input generation process. This involves randomly

generating an input for each parameter while meticulously con-

sidering its type information. Algorithm 1 presents the details for

random input generation. Given the extracted type information

(i.e., T) of all parameters, TensorJSFuzz first obtains the parameter

list (i.e., P) (Line 1). Next, it randomly selects the structure for each

parameter from the structure list specified in the type information

(Line 3). If the selected structure is atomic and the enumerated

values are specified in the type information, the parameter value

is randomly chosen from those values (Lines 5 to 6). Otherwise, it

chooses a dtype and generates a random value based on the chosen

dtype for the parameter with atomic structure (Lines 7 to 9). If the

selected structure is not atomic, TensorJSFuzz further selects the

rank, shape, and dtype for the parameter and randomly generates

a value based on them (Lines 10 to 14). Finally, we obtain a random

input that satisfies the type constraints (Line 15).

3.2.2 Dependency-aware Input Adjustments. To ensure that gener-

ated inputs satisfy dependency constraints, we introduce a dynamic

adjustment strategy that iteratively modifies inputs until all con-

straints are met. To achieve this, a parser capable of recognizing

the extracted constraints is necessary. We manually reviewed the

constraints gathered by ChatGPT and summarized them into a

simplified constraint syntax, as depicted in Figure 10. In this con-

text, the term variable refers to various parameter characteristics,

including rank, shape, value, or data type.

Algorithm 2: Adjust
Input : C: A set of constraints on all parameters

𝑅𝐼 : Randomly generated inputs

Output :𝐶𝐼 : Adjusted inputs

1 𝐶𝐼 := 𝑅𝐼 ;

2 for 𝑐 ∈ C do
3 if isLogicalExpression(𝑐) then
4 if 𝑐.𝑜𝑝 = ‘𝑜𝑟 ′ then
5 𝐿𝑅 := Adjust({𝑐.𝑙𝑒 𝑓 𝑡 },𝐶𝐼) ;
6 if 𝐿𝑅 = 𝐶𝐼 then
7 Adjust({𝑐.𝑟𝑖𝑔ℎ𝑡 },𝐶𝐼) ;

8 else if 𝑐.𝑜𝑝 = ‘𝑎𝑛𝑑 ′ then
9 Adjust({𝑐.𝑙𝑒 𝑓 𝑡 },𝐶𝐼) ;

10 Adjust({𝑐.𝑟𝑖𝑔ℎ𝑡 },𝐶𝐼) ;
11 else if isCMPExpression(𝑐) then
12 if notSatisfy(𝑐,𝐶𝐼) then
13 𝐿𝑅 := AdjustParam(𝑐.𝑙𝑒 𝑓 𝑡, 𝑐,𝐶𝐼) ;
14 if 𝐿𝑅 = 𝐶𝐼 then
15 AdjustParam(𝑐.𝑟𝑖𝑔ℎ𝑡, 𝑐,𝐶𝐼) ;

16 return𝐶𝐼 ;

17 Function AdjustParam(𝑒𝑥𝑝 , 𝑐 ,𝐶𝐼)
18 if isRank(𝑒𝑥𝑝) then
19 updateValidRank(𝑒𝑥𝑝, 𝑐,𝐶𝐼) ;
20 if isDtype(𝑒𝑥𝑝) then
21 updateValidDtype(𝑒𝑥𝑝, 𝑐,𝐶𝐼) ;
22 if isShape(𝑒𝑥𝑝) then
23 updateValidShape(𝑒𝑥𝑝, 𝑐,𝐶𝐼) ;
24 if isValue(𝑐) then
25 updateValidValue(𝑒𝑥𝑝, 𝑐,𝐶𝐼) ;
26 return𝐶𝐼 ;

Our adjustment algorithm shown in Algorithm 2, takes as input

a set of constraints C and random inputs 𝑅𝐼 , producing adjusted

inputs 𝐶𝐼 likely satisfying the constraints. The algorithm functions

as a parser, interpreting the constraint syntax and applying nec-

essary modifications for each constraint 𝐶𝐼 (Lines 2 to 15). When

encountering an or logical expression (Line 4), the algorithm at-

tempts to adjust the left-hand side (Line 5) and, if unsuccessful

(Line 6), the right-hand side (Line 7). For and logical expressions,

both sides are adjusted (Lines 8 to 10). Note that expressions in-

volving NOT or ternary logic can be transformed into equivalent

expressions. For example, ¬(𝑎 > 𝑏) can be converted to 𝑎 <= 𝑏.

The constraint 𝑎 == 𝑏?𝑐.𝑡𝑦𝑝𝑒 == 𝑖𝑛𝑡 : 𝑐.𝑡𝑦𝑝𝑒 == 𝑓 𝑙𝑜𝑎𝑡 can be

converted to (𝑎 == 𝑏 ∧ 𝑐.𝑡𝑦𝑝𝑒 == 𝑖𝑛𝑡) ∨ (𝑎 ≠ 𝑏 ∧ 𝑐.𝑡𝑦𝑝𝑒 == 𝑓 𝑙𝑜𝑎𝑡).
For comparison expressions (Line 11) that do not satisfy con-

straints (Line 12), adjustments aremade to the left-hand side (Line 13)

or the right-hand side (Line 15), depending on the types of the pa-

rameters involved. Based on the comparison in 𝑐 , for rank types (e.g.,
indices_rank==1), TensorJSFuzz tries to modify the rank (Line 19) of

the parameter indices; for dtype or shape types (e.g., a_dtype==b_dtype),
it tries to alter the data type or shape (Line 21 and Line 23); and

for value types (e.g., stride_value==1), it directly changes the pa-

rameter value (Line 25), such that the constraints 𝑐 can be satis-

fied. These modifications are based on the left or right operators

of the comparison expressions. For instance, consider a random

input 𝑅𝐼 for the operator tf.conv2d. Suppose the values of param-

eters strides and dilations are [3,5] and [4,7], respectively. They

meet the type constraints but break the dependency constraint

𝑠𝑡𝑟𝑖𝑑𝑒𝑠_𝑣𝑎𝑙𝑢𝑒 == 1 𝑜𝑟 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑠_𝑣𝑎𝑙𝑢𝑒 == 1. An adjustment is

3408

TensorJSFuzz: Effective Testing of Web-Based Deep Learning Frameworks via Input-Constraint Extraction WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

necessary to make them comply, typically modifying strides or
dilations to [1,1].

It is important to note that, given the undecidability of the

constraint-solving problem, the heuristic-based method in Algo-

rithm 2 is not a perfect solver. Constraints that contain syntax

errors generated by the LLMs, unsupported syntax elements, or

adjustments that fail to resolve properly will result in the algo-

rithm returning the original, unadjusted inputs (as seen in Line 16

and Line 26). Consequently, some inputs may not be successfully

adjusted by Algorithm 2.

3.3 Test Oracle
To systematically capture bugs during testing, TensorJSFuzz incor-

porates the following three test oracles:

Memory Bugs: Utilizing AddressSanitizer [3], TensorJSFuzz de-

tects memory-related bugs within Wasm backend, a context where

memory safety is not guaranteed. AddressSanitizer is adept at iden-

tifying a spectrum of memory bugs, such as memory out-of-bounds,

memory leaks, and use-after-free errors, bolstering our capability

to uncover memory bugs.

Crash Bugs: We characterize crash bugs as any abrupt termi-

nations of the program, including unexpected exceptions, aborts,

and segmentation faults. Similar to previous work [37], we also

employ heuristic methods to filter the expected exceptions which

are typically syntax-related exceptions, caused by invalid inputs.

Differential Testing: For identifying logical bugs (Wrong Com-

putation Bugs) that do not disrupt execution, we conduct differ-

ential testing across four TensorFlow.js backends: CPU, WebGL,

Wasm, and TensorFlow. When the same input produces divergent

outputs from operators across these backends, a bug is suspected.

To account for minor discrepancies, which may arise from backend-

specific computational precision and are not considered bugs, we

apply the following metric:

𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 =

∑𝑁
𝑖=1 |𝐴𝑖 − 𝐵𝑖 |

𝑁

where 𝑁 is the total number of output tensor elements, and 𝐴𝑖 ,

𝐵𝑖 represent the i-th elements of tensors A and B, respectively.

A difference exceeding a predefined threshold indicates a poten-

tial wrong-computation bug. In this paper, to avoid false positives

caused by the natural and expected differences between different

backends, we set a larger threshold of 1,000.

4 Evaluation
To evaluate the effectiveness of TensorJSFuzz, we aim to answer

the following research questions (RQs):

RQ1: How effective is TensorJSFuzz in accurately extracting con-

straints from the source code of web-based DL frameworks?

RQ2: How does TensorJSFuzz perform in generating inputs and

detecting bugs when compared to baselines?

RQ3: What kinds of bugs can be detected by TensorJSFuzz?

4.1 Experimental Setup
Baselines. For a comparative analysis in our study, we selected

DocTer [39], the method most closely aligned with ours, which

extracts constraints from API function descriptions, as the baseline.

We excluded ACETest because it is specifically designed for C++

code. To ensure a fair comparison, we extracted API descriptions

for TensorFlow.js operators from the official documentation, used

DocTer’s replication package to generate inputs, and integrated our

testing oracles into DocTer.

Furthermore, we implemented 2 additional representative base-

lines: 1) Random, a type-aware random fuzzer that recognizes pa-

rameter types but ignores dependency constraints. 2) TensorJSFuzz-

SMT, a variant of TensorJSFuzz, which translates constraints into

SMT formulas and leverages Z3 for generating random solutions.

Since Z3 lacks a built-in batch sampling function, we iteratively

add constraints to exclude previously obtained solutions, ensur-

ing diversity. After this step, TensorJSFuzz-SMT produces a batch

of unique solutions for the constraints. For parameters without

constraints, it generates random values. We excluded a baseline

without type information, as type awareness is essential for valid

inputs; without it, generating test cases is nearly impossible.

Environment. In our experiments, the model GPT-4 is used. To

manage the randomness of ChatGPT’s responses, we conducted

experiments with various parameter settings. Based on our expe-

rience, we selected the optimal parameter values: the parameters

top_p and temperature are set to 0.1 and 0.5, respectively. We tested

TensorFlow.js on the version 4.1.0, which defines 231 DL operators

in tfjs-core, divided into nine categories. Each operator was tested

through a headless Chrome browser, facilitated by Puppeteer [2].

Since the browser was opened and closed three times for each test

input across three backends: CPU, Wasm, and WebGL, the aver-

age processing time was approximately 3 seconds per input. To

effectively manage the time constraints, we followed the approach

of [39] and limited each fuzzer to produce 1,000 test inputs per

operator. To mitigate the impact of randomness, each experiment

was repeated three times during testing, and the average values of

these runs were used for comparative analysis.

All experiments are conducted on a high-performance worksta-

tion equipped with a 64-bit Ubuntu 20.04 LTS system, 32GB RAM,

and two 18-core 2.3GHz Intel Xeon E5-2699 CPUs.

4.2 RQ1: Effectiveness of constraint extraction
4.2.1 The number of constraints. Table 2 displays the number of

constraints extracted by DocTer and TensorJSFuzz. The constraints

extracted by TensorJSFuzz are composed of twomain types. The row

Type Info shows constraints related to type information. Meanwhile,

Den. Constraints represents the number of dependency constraints

identified, quantified as the total count of individual extracted ex-

pressions. Columns 3-6 indicate the number of constraints related to

each parameter. Given that rank equates to the length of the shape,

rank-related constraints are grouped under the shape category.

TensorJSFuzz extracts a total of 2,046 constraints, nearly four

times more than DocTer, which is 538. TensorJSFuzz is more ef-

fective than DocTer, especially in terms of the shape and value

properties. Structure-related constraints can be expressed in simple

natural language, so DocTer can also easily obtain such constraints

from the documents, which leads to similar constraint numbers of

structure in the table. In particular, TensorJSFuzz extracts 620 de-

pendency constraints, whereas most of the constraints extracted by

DocTer are limited to type constraints due to its lack of code-level

analysis. Additionally, we did not observe any structural constraints,

3409

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Lili Quan et al.

Table 2: Number of extracted constraints

Constraint Type dtype structure shape value Total

DocTer Type & Den. 130 414 165 49 538

TensorJSFuzz
Type Info 423 500 327 176 1,426

Den. Constraints 233 0 232 155 620

Total 656 500 559 331 2,046

Table 3: Quality of dependency constraints

dtype shape value Total

Precision(%) 81.9 96.9 94.9 90.9

Recall(%) 94.5 94.2 97.7 95.2

F1(%) 87.8 95.5 96.1 93.3

as TensorFlow.js does not perform structure validation in its check-

ing code. These results demonstrate that TensorJSFuzz is capable

of automatically extracting more comprehensive constraints, sig-

nificantly reducing the need for manual effort.

4.2.2 The quality of extracted constraints. Type information comes

from function signatures via static methods and is precise. Mean-

while, ChatGPT provides dependency constraints. To assess the

quality of these dependency constraints, we randomly selected 20%

(95 parameters) for manual verification. This verification was con-

ducted independently by this paper’s three authors and resulted in

unanimous agreement. For each parameter, we annotated specific

constraints based on the source code to establish a solid ground

truth. The constraints extracted by ChatGPT were then compared

against this benchmark. In the verification, we employed standard

metrics including precision, recall, and the F1 score. Precision rep-

resents the percentage of correctly extracted constraints (those

matching the ground truth) out of all extracted constraints. Recall

is the percentage of correctly extracted constraints out of the total

ground truth constraints. The F1 score is the harmonic mean of

precision and recall.

Table 3 displays the precision, recall, and F1 score for each cate-

gory of dependency constraint. Overall, ChatGPT achieves a high

precision (90.9%), recall (95.2%), and F1 score (93.3%) across all three

categories. ChatGPT is more effective in extracting shape/value-

related dependency constraints with an F1 score over 95%. It is less

effective in dtype-related dependency constraints. The reason is

that ChatGPT sometimes misinterprets “Tensor” as data type. For

instance, it might extract a constraint like “x_dtype==Tensor”. This

does not affect the generation of valid inputs, as for these kinds of

dependency-free dtype constraints, TensorJSFuzz adheres to the

extracted Type Info.

Answer to RQ1: Compared to DocTer, TensorJSFuzz is capable

of extracting more constraints, and its precision and recall in

constraint extraction are satisfactory.

4.3 RQ2: Comparison with existing methods
4.3.1 The effectiveness of generating inputs. Generating valid in-

puts is essential for passing a DL operator’s validity checks. Since

manual input validation is impractical, we follow prior work [39]

and consider inputs that terminate normally—i.e., without excep-

tions, as a reasonable approximation of validity. An input is deemed

valid if it successfully terminates on any backend. We assess the

Table 1

Random DocTer TensorJSFuzz-
SMT

TensorJSFuzz

Pass Rate 36.05% 38.79% 62.12% 71.83%

Suc_Operator

0%

20%

40%

60%

80%

Ra
nd

om

Do
cT

er
Te

ns
or

JS
Fu

zz
-S

MT
Te

ns
or

JS
Fu

zz

71.83%
62.12%

38.79%36.05%

Pass Rate

1

(a) Pass rate

21

0

43

15

0

0

4
2

0

0
11

2

1

0

12

Random
DocTer
TensorJSFuzz-SMT
TensorJSFuzz

(b) Bug distribution

Figure 4: Comparison between TensorJSFuzz and baselines
regarding pass rate and bug distribution

ratio of passing inputs generated by each tool, i.e., pass rate. Note

that DocTer can be configured to generate inputs that violate con-

straints. For a fair comparison, we set the mutation_p in DocTer to

0, ensuring only generates inputs that adhere to constraints.

Figure 4a shows the input pass rates for each tool. Notably, Ten-

sorJSFuzz achieves a 71.83% pass rate, surpassing Random (36.05%),

DocTer (38.79%), and TensorJSFuzz-SMT (62.12%). This marks an

increase of 199.25% over Random and 185.17% over DocTer, largely

due to TensorJSFuzz’s efficient extraction of dependency constraints.

Moreover, despite TensorJSFuzz and TensorJSFuzz-SMT utilizing

identical constraints, TensorJSFuzz records a higher pass rate. This

discrepancy arises because TensorJSFuzz-SMT does not address

constraints related to tensor values, the number of elements, or

loop constraints due to their computational cost [34]. Properties

corresponding to these unresolved constraints are generated ran-

domly. These findings underscore the proficiency of TensorJSFuzz

in generating valid inputs that effectively test core functionalities.

Further investigation into invalid inputs generated by TensorJS-

Fuzz revealed some inaccuracies in constraints extracted by Chat-

GPT. For example, it fails to extract the implicit constraint𝑎_𝑠ℎ𝑎𝑝𝑒 ==

𝑏_𝑠ℎ𝑎𝑝 in the operator tf.add, which are not checked in the JavaScript
source code. Additionally, some invalid inputs stem from our syn-

tax parsing’s limitations. Specifically, certain complex scenarios,

like array range indexing (e.g.,𝑚𝑎𝑠𝑘_𝑠ℎ𝑎𝑝𝑒 == 𝑡𝑒𝑛𝑠𝑜𝑟_𝑠ℎ𝑎𝑝𝑒 [𝑎𝑥𝑖𝑠 :
𝑎𝑥𝑖𝑠+𝑚𝑎𝑠𝑘_𝑟𝑎𝑛𝑘]) and data structure parameters (e.g.,HTMLVideoEle-
ment), were not fully supported in TensorJSFuzz.

4.3.2 The effectiveness of detecting bug. We conducted a compara-

tive analysis of TensorJSFuzz against all baselines for bug identi-

fication. Aligning with DocTer’s optimal settings, which involve

parameters like optional_ratio and mutation_p, we evaluated differ-

ent configurations on a randomly selected 10% subset of operators

to find the best one. The configuration that yielded the best results

in our tests set optional_ratio to 0.2 and mutation_p to 0.4.

Table 4 shows the number of bugs detected by each tool. The

column 2-4 indicates the average total number of bugs found in

each backend. We can see that TensorJSFuzz uncovered 89.67 bugs

across the four backends. Notably, TensorJSFuzz outperformed each

baseline, Random(24.67), DocTer(32.34), and TensorJSFuzz-SMT

(68.00), in every backend.

On investigating the bugs that DocTer and Random failed to

identify, we attributed this to their inability to extract complex

dependencies. For instance, both Random and DocTer struggled to

3410

TensorJSFuzz: Effective Testing of Web-Based Deep Learning Frameworks via Input-Constraint Extraction WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Table 4: The number of bugs detected by different tools

Backend CPU Wasm WebGL Tensorflow Total

Random 6.00 7.67 7.67 3.33 24.67

DocTer 7.33 9.67 10.67 4.67 32.34

TensorJSFuzz-SMT 14.67 29.67 14.33 9.33 68.00

TensorJSFuzz 22.33 36.67 19.00 11.67 89.67

identify dependencies between parameters like x and filter in con-

volution operators, as outlined in Section 2. This led to only 1-2 out

of 1000 inputs passing checks, greatly reducing test effectiveness.

However, for the same constraints, TensorJSFuzz-SMT detects fewer

bugs than TensorJSFuzz because the generated inputs are not di-

verse enough. We observed that TensorJSFuzz-SMT often generates

boundary values, even when additional constraints are introduced

after each iteration to encourage more diverse inputs. For instance,

in the case of tf.conv3d, among the 1,000 generated inputs, tensor x

had only 29 unique shapes. Additionally, variations in these shapes

were limited to the first and last elements, resulting in shapes re-

sembling “[,1,1,1,]”. Comparatively, TensorJSFuzz achieves higher

diversities, for example, tensor x had 999 unique shapes in the case

of tf.conv3d, which explore space of valid input more adequately.

These findings underscore TensorJSFuzz’s superior performance

in bug detection, attributed primarily to its effective extraction of

dependency constraints and valid input generation.

We also analyze the distribution of bugs found by each tool. As

seen in Figure 4b, these tools find different bugs. Note that here we

count the total number of bugs detected across all repetitions. For

example, TensorJSFuzz can find all bugs found by TensorJSFuzz-

SMT since they generate inputs using the same constraints. 64, 15,

and 2 unique bugs are found by TensorJSFuzz, DocTer, and Ran-

dom, respectively. This is due to the differences in their respective

methods of extracting constraints. Random and DocTer miss 68 and

75 bugs found by TensorJSFuzz, respectively. This is because they

cannot extract the fine-grained constraints. TensorJSFuzz misses

4 bugs found by Random due to the randomness of the input gen-

eration process. DocTer found some unique bugs because it can

generate some inputs that violate constraints to test the checking

code of DL operator. Differently, TensorJSFuzz mainly generates

valid inputs conforming to constraints. However, TensorJSFuzz still

detects more bugs than DocTer, highlighting the importance of

generating valid inputs.

Additionally, we further compared the average time each tool

takes to discover the first bug for each operator. Moreover, we

recorded the input ID that triggered the first bug, indicating the

number of inputs needed to trigger the first bug. The results are

presented in Table 5. We can observe that DocTer and Random take

more than twice the time compared to TensorJSFuzz to discover

the first bug. Moreover, on average TensorJSFuzz only needs to

generate 290.75 inputs to discover a bug, while TensorJSFuzz-SMT,

DocTer, and the Random require 415.75, 687.65, and 809.3 inputs,

respectively. These results further indicate the TensorJSFuzz is more

efficient in detecting bugs.

Answer to RQ2: TensorJSFuzz generates more valid inputs

than all baselines. Moreover, TensorJSFuzz demonstrates a no-

table advantage in both the efficiency and effectiveness of bug

detection over all baselines.

Table 5: Average time to find the first bug

TensorJSFuzz TensorJSFuzz-SMT DocTer Random

#Inputs 290.75 415.75 687.65 809.32

Times(min) 14.54 34.64 34.38 41.20

Table 6: Distribution of detected bugs by TensorJSFuzz

#Bugs (#Wrong-computation, #Crashes, #Memory) Total Confirmed
(Fixed)CPU Wasm WebGL Tensorflow

23(8/15/0) 37(10/2/25) 20(8/12/0) 12(4/8/0) 92 30(11)

4.4 RQ3: Bug Analysis
We further performed an in-depth analysis to characterize the bugs

we detected. Table 6 presents detailed statistics about the bugs

found by TensorJSFuzz. The number of wrong-computation bugs,

crash bugs, and memory bugs are shown in “()" of the column #Bugs.

We can observe that TensorJSFuzz detected 92 bugs in total (with

30 already confirmed as previously unknown bugs), and 11 of them

have been fixed by the developers to date. The unconfirmed bugs

are reproducible and waiting for the response of the developers.

The 92 bugs include 30 wrong-computation bugs, 37 crash bugs,

and 25 memory bugs, demonstrating the effectiveness of three test

oracles. Specifically, we can observe that most wrong-computation

bugs (26/30) are distributed in the backend CPU, Wasm, and We-

bGL. 25 memory bugs are identified in the Wasm backend, respec-

tively. No memory bugs are discovered in the CPU, WebGL and

TensorFlow backends, which mainly arises from the absence of a

dedicated memory bug oracle. These results indicate considerable

inconsistencies in the implementation logic of TensorFlow.js opera-

tors across the four backends. In particular, the implementations

for the web-specific backends, i.e., CPU, Wasm, and WebGL, should

align with the mature Tensorflow backend, which invokes the same

tensorflow.so as the DL framework TensorFlow.

In addition to detecting the three main categories of bugs men-

tioned above, we also uncovered 41 inconsistent behaviors between

the Tensorflow backend and the other three web-specific backends.

These discrepancies arise from variations in the supported parame-

ter values. For example, when the parameter pad is set to a number,

the operator of Tensorflow backend returns an exception with “TF
Backend supports only ‘valid’ and ‘same’ padding while padding was
NUMBER” while other backends return an output tensor. These

inconsistencies, while not classified as bugs in our study, highlight

shortcomings in the cross-platform deployment of TensorFlow.js.

Case-Study 1 (Memory Bug): Figure 5 shows the code that

triggers a memory bug in the operatortf.conv2d. When running it

in the Wasm backend, a memory error occurred with the message

“requested allocation size 0xd55559f0 exceeds the maximum supported
size of 0xc0000000”. Debugging revealed that a negative pad was

converted from number to size_t in theWasm-specific kernel wasm-
Conv2d, becoming 4294967292, which caused indirection_buffer_size
to exceed the allocation limit of xnn_reallocate_memory. This bug
has been confirmed by developers. Since parameters x, filter, and
dataFormat must meet the dependency constraint 𝐷𝑎𝑡𝑎𝐹𝑜𝑟𝑚𝑎𝑡 ==

𝑁𝐻𝑊𝐶?𝑥_𝑠ℎ𝑎𝑝𝑒 [3] = 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑠ℎ𝑎𝑝𝑒 [2] : 𝑥_𝑠ℎ𝑎𝑝𝑒 [1] = 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑠ℎ𝑎𝑝𝑒 [2],
Random and DocTer struggle to generate valid inputs and thus fail

to detect this bug.

3411

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Lili Quan et al.

 var x=tf.ones([1,16,7,4]);
 var filter =tf.fill([17,13,4,4],3,"float32");
 var prediction = await tf.conv2d(input,filter,[25,24],-4,"NHWC",[1,1],"ceil");
Target API: tf.conv2d
Catch: requested allocation size exceeds maximum supported size.

Figure 5: The example of memory bug

var x=tf.fill([1,15,16,8],32,"float32");
var df=tf.fill([9,10,8,11],3,"float32");
var pf=tf.fill([1,1,88,6],3,"float32");
const result = tf.separableConv2d(input,df,pf,1,"valid", [0,2],"NHWC");

Target API: tf.separableConv2d
Catch: Crash/Inconsistent between backends

wasm:RuntimeError: null function or function signature mismatch
Tensorflow:Tensor[2280960,2280960,....]

Figure 6: The example of crash bug

var result = tf.avgPool3d(x,[1,2,2], 1, 3,"floor","NDHWC");
var x = tf.fill([1,3,3,3,3],3,"float32")

// CPU result: [[[[NaN,NaN,NaN],[NaN,NaN,NaN],[NaN,NaN,NaN]....]]]
// Tensorflow result: [[[[[0,0,0],[0,0,0],[0,0,0],....]]]]

Target API: tf.avgPool3d
Catch: Inconsistent between backends

Figure 7: The example of wrong-computation bug

Case-Study 2 (Crash Bug): Figure 6 shows a crash bug in

tf.separableConv2d. When running the code snippet on the back-

end Wasm, the crash is triggered with the message “RuntimeEr-
ror: null function or function signature mismatch”. This crash bug

has been confirmed by the developers who replied “...I was able
to replicate the issue. We’ll investigate further and update soon...”.
Since parameters x, depthwiseFilter, and pointwiseFilter need to

satisfy the dependency constraint 𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒𝐹𝑖𝑙𝑡𝑒𝑟_𝑠ℎ𝑎𝑝𝑒 [2] ===
𝑥_𝑠ℎ𝑎𝑝𝑒 [3] ∗𝑑𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐹𝑖𝑙𝑡𝑒𝑟_𝑠ℎ𝑎𝑝𝑒 [3], making Random and Doc-

Ter unable to detect the bug.

Case-Study 3 (Wrong-Computation Bug): Figure 7 shows a

wrong-computation bug in tf.avgPool3d. When running the code

snippet on the backend CPU, it returns a tensor with all elements

set to NaN. However, the backend WebGL returns a tensor with all

elements set to 0. The developers have fixed this bug by modifying

the CPU-specific kernel function to avoid dividing zero when com-

puting averages. All of the methods can detect this bug as it does

not require complex dependency constraints.

Answer to RQ3: TensorJSFuzz detected 92 real-world bugs in

total, 30 of which have been confirmed or fixed by developers.

5 Related Work
5.1 Model-level Fuzzing of DL Framework
Model-level fuzzers focus on generating various DL models for

the target DL framework. CRADLE [31] is the first work to find

and localize bugs in DL frameworks, which detects inconsisten-

cies by running existing models on multiple backends of Keras.

LEMON [9] and AUDEE [23] further extend the idea of CRADLE

to generate more diverse models. Muffin [21] generates DL mod-

els for testing DL frameworks in both the inference and training

phases. Recently, NNSmith [27] tested DL compilers by generating

diverse yet valid DNN models. These works all focus on fuzzing the

native DL frameworks (e.g., TensorFlow and PyTorch). Different

from them, we employ a more fine-grained operator-level fuzzing

technique to test each operator of the web-based DL framework,

e.g., TensorFlow.js.

5.2 Operator-level Fuzzing of of DL Framework
Operator-level fuzzing focuses on testing individual operators of

the DL framework, which can test more operators than model-

level fuzzing. FreeFuzz [37] mines inputs from open-source code

snippets and then apply random mutations to generate diverse in-

puts. Similarly, SkipFuzz [25] employs an active learning approach,

inferring the input constraints through the fuzzing process. Deep-

REL [12] and EAGLE [35] further leverage differential testing on

relational operators (e.g., operators that always return the same

results/statuses given the same inputs) to cover more operators.

DocTer [39] extracts the input constraints from API documentation

and then generates inputs based on these constraints. ACETest [34]

extracted constraints from the code of the low-level DL operator

specifically implemented with C/C++. More recently,▽Fuzz [40]
utilizes automatic differentiation as the test oracle for more effec-

tive fuzzing. Different from the above model- and operator-level

fuzzers, [17] apply modern Large Language Models (LLMs) [14] to

generate diverse DL API sequences for testing.

While the aforementioned works are all effective in discover-

ing bugs in DL frameworks, none of them targeted the web DL

frameworks (e.g., TensorFlow.js). Different from them, firstly, we

target the web-based DL framework, i.e., TensorFlow.js, which is

different from native libraries in terms of the implementations of

DL backends and the execution environments. Secondly, previous

fuzzers extract input constraints from API documentation or infer

valid input from open-source code snippets. We utilize the capabil-

ities of Large Language Models (LLMs) to comprehend code and

extract the dependency constraints via an in-context learning mech-

anism. Thirdly, We designed a new Oracle for the Wasm backend of

TensorFlow.js, leveraging AddressSanitizer [33] to detect memory-

related bugs, considering the characteristics of the web-based DL

framework.

6 Conclusion
This paper presents TensorJSFuzz, the first fuzzer specifically de-

signed for testing web-based DL framework. TensorJSFuzz excels

in extracting high-quality constraints, deriving type-related con-

straints from function signatures and dependency constraints di-

rectly from the function code. These constraints allow TensorJSFuzz

to generate valid inputs that bypass syntactical checks, improving

the effectiveness of testing within the web environment. Our eval-

uation demonstrates that TensorJSFuzz significantly outperforms

existing baselines in detecting bugs both effectively and efficiently.

It successfully uncovered 92 bugs, of which 30 have already been

confirmed or fixed by developers, highlighting its practical impact

on improving the robustness of web-based DL frameworks.

Acknowledgments
This work was partly supported by the National Natural Science

Foundation of China (Grant No.62332005, 62102283), and the Na-

tional Research Foundation, Singapore, the Cyber Security Agency

under its National Cybersecurity R&D Programme (NCRP25-P04-

TAICeN). Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the author(s) and do

not reflect the views of National Research Foundation, Singapore

and Cyber Security Agency of Singapore.

3412

TensorJSFuzz: Effective Testing of Web-Based Deep Learning Frameworks via Input-Constraint Extraction WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

References
[1] 2023. ChatGPT. https://openai.com/chatgpt

[2] 2023. Puppeteer. https://devdocs.io/puppeteer/

[3] 2023. Sanitizers. https://learn.microsoft.com/en-us/cpp/sanitizers/asan?view=

msvc-170

[4] 2024. CPU-backend of Tensorflow.js. https://github.com/tensorflow/tfjs/tree/

master/tfjs-backend-cpu

[5] 2024. Tensorflow-backend of Tensorflow.js. https://github.com/tensorflow/tfjs/

tree/master/tfjs-node

[6] 2024. Wasm-backend of Tensorflow.js. https://github.com/tensorflow/tfjs/tree/

master/tfjs-backend-wasm

[7] 2024. Webgl-backend of Tensorflow.js. https://github.com/tensorflow/tfjs/tree/

master/tfjs-backend-webgl

[8] 2024. Website of gptfjsfuzz. https://sites.google.com/view/gptfjsfuzz

[9] Jawad Yousif AlZamily and Samy Salim Abu Naser. 2020. Lemon classification

using deep learning. (2020).

[10] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk

Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,

et al. 2021. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732 (2021).

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[12] Tian Cai, Kyra Alyssa Abbu, Yang Liu, and Lei Xie. 2022. DeepREAL: a deep learn-

ing powered multi-scale modeling framework for predicting out-of-distribution

ligand-induced GPCR activity. Bioinformatics 38, 9 (2022), 2561–2570.
[13] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao Chen, Linyi

Yang, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. 2023. A survey on

evaluation of large language models. arXiv preprint arXiv:2307.03109 (2023).
[14] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira

Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,

et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[15] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In

International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[16] Li Deng, Geoffrey Hinton, and Brian Kingsbury. 2013. New types of deep neural

network learning for speech recognition and related applications: An overview.

In 2013 IEEE international conference on acoustics, speech and signal processing.
IEEE, 8599–8603.

[17] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming

Zhang. 2023. Large language models are zero-shot fuzzers: Fuzzing deep-learning

libraries via large language models. In Proceedings of the 32nd ACM SIGSOFT
international symposium on software testing and analysis. 423–435.

[18] Charlie Gerard and Charlie Gerard. 2021. TensorFlow. js. Practical Machine
Learning in JavaScript: TensorFlow. js for Web Developers (2021), 25–43.

[19] Palash Goyal, Sumit Pandey, and Karan Jain. 2018. Deep learning for natural

language processing. New York: Apress (2018).
[20] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. 2013. Speech

Recognition with Deep Recurrent Neural Networks. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP. IEEE,
6645–6649. doi:10.1109/ICASSP.2013.6638947

[21] Jiazhen Gu, Xuchuan Luo, Yangfan Zhou, and Xin Wang. 2022. Muffin: Testing

deep learning libraries via neural architecture fuzzing. In Proceedings of the 44th
International Conference on Software Engineering. 1418–1430.

[22] Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu,

Jianjun Zhao, and Xiaohong Li. 2019. An empirical study towards characterizing

deep learning development and deployment across different frameworks and

platforms. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 810–822.

[23] Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao

Shen. 2020. Audee: Automated testing for deep learning frameworks. In Pro-
ceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering. 486–498.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In Proceedings of the 29th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR. IEEE Computer Society, 770–778.

doi:10.1109/CVPR.2016.90

[25] Hong Jin Kang, Pattarakrit Rattanukul, Stefanus Agus Haryono, Truong Giang

Nguyen, Chaiyong Ragkhitwetsagul, Corina Pasareanu, and David Lo. 2022.

SkipFuzz: Active Learning-based Input Selection for Fuzzing Deep Learning

Libraries. arXiv preprint arXiv:2212.04038 (2022).
[26] Shutao Li, Weiwei Song, Leyuan Fang, Yushi Chen, Pedram Ghamisi, and Jon Atli

Benediktsson. 2019. Deep learning for hyperspectral image classification: An

overview. IEEE Transactions on Geoscience and Remote Sensing 57, 9 (2019),

6690–6709.

[27] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and

Lingming Zhang. 2023. Nnsmith: Generating diverse and valid test cases for deep

learning compilers. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2. 530–543.

[28] Yang Liu. 2019. Fine-tune BERT for extractive summarization. arXiv preprint
arXiv:1903.10318 (2019).

[29] Yun Ma, Dongwei Xiang, Shuyu Zheng, Deyu Tian, and Xuanzhe Liu. 2019.

Moving deep learning into web browser: How far can we go?. In The World Wide
Web Conference. 1234–1244.

[30] Iulian Neamtiu, Jeffrey S Foster, and Michael Hicks. 2005. Understanding source

code evolution using abstract syntax tree matching. In Proceedings of the 2005
international workshop on Mining software repositories. 1–5.

[31] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:

cross-backend validation to detect and localize bugs in deep learning libraries.

In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 1027–1038.

[32] Lili Quan, Qianyu Guo, Xiaofei Xie, Sen Chen, Xiaohong Li, and Yang Liu. 2022.

Towards understanding the faults of javascript-based deep learning systems. In

Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. 1–13.

[33] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy

Vyukov. 2012. {AddressSanitizer}: A fast address sanity checker. In 2012 USENIX
annual technical conference (USENIX ATC 12). 309–318.

[34] Jingyi Shi, Yang Xiao, Yuekang Li, Yeting Li, Dongsong Yu, Chendong Yu, Hui

Su, Yufeng Chen, and Wei Huo. 2023. Acetest: Automated constraint extraction

for testing deep learning operators. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. 690–702.

[35] Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin

Tan. 2022. EAGLE: creating equivalent graphs to test deep learning libraries. In

Proceedings of the 44th International Conference on Software Engineering. 798–810.
[36] Zihan Wang, Pengbo Nie, Xinyuan Miao, Yuting Chen, Chengcheng Wan, Lei

Bu, and Jianjun Zhao. 2023. GenCoG: A DSL-Based Approach to Generating

Computation Graphs for TVM Testing. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. 904–916.

[37] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free

lunch for testing: Fuzzing deep-learning libraries from open source. In Proceedings
of the 44th International Conference on Software Engineering. 995–1007.

[38] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff

Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan

Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,

Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,

Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s

Neural Machine Translation System: Bridging the Gap between Human and

Machine Translation. CoRR abs/1609.08144 (2016). arXiv:1609.08144 http://arxiv.

org/abs/1609.08144

[39] Danning Xie, Yitong Li, Mijung Kim, Hung Viet Pham, Lin Tan, Xiangyu Zhang,

and Michael W Godfrey. 2022. DocTer: documentation-guided fuzzing for testing

deep learning API functions. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 176–188.

[40] Chenyuan Yang, Yinlin Deng, Jiayi Yao, Yuxing Tu, Hanchi Li, and Lingming

Zhang. 2023. Fuzzing automatic differentiation in deep-learning libraries. arXiv
preprint arXiv:2302.04351 (2023).

[41] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,

and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language

understanding. Advances in neural information processing systems 32 (2019).

A Appendix
A.1 Example of Extracting Type Information
Figure 8 shows an example of extracting type information for the

parameters of tf.conv2d operator. The type information extractor

parses it into an abstract syntax tree (i.e., AST in Figure 8), where

the ‘parameters’ node and ‘type’ node are marked as the blue box

and green box, respectively. Following this, the extractor acquires

syntax information from the ‘type’ node for each parameter and

further refines it into type information based on categories. For

example, the obtained syntax information of parameter strides is
“[number, number]|number”, and the refined type information are

{structure:[Array, number], dtype: number, shape: [2]}.

3413

https://openai.com/chatgpt
https://devdocs.io/puppeteer/
https://learn.microsoft.com/en-us/cpp/sanitizers/asan?view=msvc-170
https://learn.microsoft.com/en-us/cpp/sanitizers/asan?view=msvc-170
https://github.com/tensorflow/tfjs/tree/master/tfjs-backend-cpu
https://github.com/tensorflow/tfjs/tree/master/tfjs-backend-cpu
https://github.com/tensorflow/tfjs/tree/master/tfjs-node
https://github.com/tensorflow/tfjs/tree/master/tfjs-node
https://github.com/tensorflow/tfjs/tree/master/tfjs-backend-wasm
https://github.com/tensorflow/tfjs/tree/master/tfjs-backend-wasm
https://github.com/tensorflow/tfjs/tree/master/tfjs-backend-webgl
https://github.com/tensorflow/tfjs/tree/master/tfjs-backend-webgl
https://sites.google.com/view/gptfjsfuzz
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Lili Quan et al.

conv2d_

x strides ...

Tensor3D

function

Tensor4D

TensorLike [number,number]

number

ASTFunction Signature

type type

function conv2d_
<T extends Tensor3D|Tensor4D>(
 x: T|TensorLike,
 filter: Tensor4D|TensorLike,
 strides: [number, number]|number,
 ...):T{
 //code implementations
}

parameters

...

Parameter Type
Information

operator: tf.conv2d
 x:
 structure: [Tensor, TensorLike]
 Tensor:
 rank: [3,4]

 strides:
 structure: [Array,number]
 Array:
 dtype: number
 shape: [2]
 ...

Figure 8: The example of extracting type information

A.2 The Prompt for Querying ChatGPT
Figure 9 illustrates an example prompt for querying ChatGPT,

which consists of a task description and a specific example. This

example defines the expected output for the given task. For instance,

the extracted expression 𝑠𝑡𝑟𝑖𝑑𝑒𝑠_𝑣𝑎𝑙𝑢𝑒 == 1 𝑜𝑟 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛𝑠_𝑣𝑎𝑙𝑢𝑒 ==
1 indicates that either strides or dilations must be 1.

Act as a professional software engineer specializing in deep learning libraries. Your task is
to meticulously analyze a given JavaScript-based deep learning library code, identify and
extract all constraints on the parameters. These constraints are critical for ensuring the
successful execution of the kernel function within the given code. Once identified,
articulate these constraints in the form of clear, concise, and precise mathematical
expressions or logical statements.

To guide your analysis, consider aspects such as parameter types, dimensional
requirements, value ranges, and any preconditions or postconditions related to the
parameters.

Given the following source code for conv2d operator, the output should systematically list
constraints on the parameters:
>>>conv2d_sourcecode<<<

Expected output:
strides_value==1 or dilations_value==1;
(dataFormat_value=='NHWC') ? x_shape[3]==filter_shape[3]:x_shape[1]==filter_shape[3];
dimRoundingMode_value==null? pad_dtype==string : pad_type==int ...

Now, apply this methodical approach to the following code. Extract and present the
constraints of parameters in a clear, structured format, akin to the provided example.

>>>conv3d_sourcecode<<<

Descriptions:

Example:

Task:

Figure 9: The prompt for querying ChatGPT

A.3 Backus-Naur Form (BNF) Grammar of
Constraint

Figure 10 illustrates the BNF grammar of LLM-extracted constraint,

enabling a parsing algorithm to convert unstructured strings into a

structured format. To define this grammar, we analyzed a subset

of extracted constraints to identify common operators (e.g., arith-

metic, logical, comparative) and parameter attributes (e.g., rank,

shape, value). Based on this, we formulated a BNF grammar and

developed a parsing algorithm, refining both iteratively through

manual analysis of unparsable cases. This process continued until

all valid constraints were successfully parsed. While our grammar

captures common patterns, it remains adaptable for future updates

as new constraints or operators emerge.

<constraint> ::= <expression>
<expression> ::= <term>
 | <expression> <operator> <expression>
 | '(' <expression> ')'
 | <expression> ?< expression >: <expression>
<term> ::= <value> | <variable>
<value> ::= <number> | <string> |<int> | <float>
<operator> ::= <arithmetic_operator> | <logical_operator> | <comparison_operator>
<arithmetic_operator> ::= '+' | '-' | '*' | '/' | '%'
<logical_operator> ::= 'or' | 'and' | 'not'
<comparison_operator> ::= '<' | '>' | '>=' | '<=' | '==' | '!='

Figure 10: The constraint BNF grammar

A.4 Generalizability of Constraint Extraction
Across LLMs

Our method extends beyond GPT and applies to other LLMs. Depen-

dency constraint extraction is not inherently difficult for existing

LLMs, as these constraints are often explicitly defined in exception

handling or validation code. Thus, the task primarily relies on an

LLM’s ability to parse and understand code structure rather than

on advanced reasoning.

To validate this, we conducted additional evaluations by incorpo-

rating additional LLMs, and the results are summarized in Table 7.

This demonstrates the robustness and broad applicability of our

constraint extraction method.

Table 7: Performance of Different LLMs in Extracting Con-
straints

LLMs GPT-4 gpt-3.5-turbo llama3.2-3b Qwen2.5-coder-32B-instruct Phi-3.5-mini-instruct

Accuracy(%) 90.9 89.7 88.6 90.3 90.5

While fine-tuning could enhance extraction accuracy, we did

not include it in this paper, as the task primarily relies on parsing

rather than complex reasoning. Our method already achieves 90%

accuracy without fine-tuning, highlighting a trade-off between cost

and performance.

A.5 Generalizing to Other Web-Based DL
Frameworks

Our approach can be generalized to other web-based DL frame-

works, but several challenges remain: A primary challenge is source

code availability. For instance, we could not test ONNX.js due to

its lack of a public API, which prevents constraint extraction. Addi-

tionally, a DL framework’s code style can affect extraction accuracy.

For frameworks with significantly different styles, LLM prompts

may need adjustment, or fine-tuning may be required to ensure

accurate extraction.

3414

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Preliminary
	2.2 Motivation Example

	3 Approach
	3.1 Constraint Extraction
	3.2 Input Generation
	3.3 Test Oracle

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Effectiveness of constraint extraction
	4.3 RQ2: Comparison with existing methods
	4.4 RQ3: Bug Analysis

	5 Related Work
	5.1 Model-level Fuzzing of DL Framework
	5.2 Operator-level Fuzzing of of DL Framework

	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Example of Extracting Type Information
	A.2 The Prompt for Querying ChatGPT
	A.3 Backus-Naur Form (BNF) Grammar of Constraint
	A.4 Generalizability of Constraint Extraction Across LLMs
	A.5 Generalizing to Other Web-Based DL Frameworks

