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Abstract

As web applications grow in popularity, developers are increasingly
integrating deep learning (DL) models into these environments.
Web-based DL frameworks (e.g., TensorFlow.js) are essential for
building and deploying such applications. Therefore, ensuring the
quality of these frameworks is critical. While extensive testing ef-
forts have been made for native DL frameworks such as TensorFlow
and PyTorch, web-based DL frameworks have not yet undergone
systematic testing. A key challenge is generating syntactically and
semantically valid inputs while designing effective test oracles for
web environments. To address this, we introduce TensorJSFuzz, a
novel method for testing web-based DL frameworks. To ensure
input quality, TensorJSFuzz extracts constraints directly from the
source code of DL operators. By leveraging Large Language Models
(e.g., ChatGPT) to understand the code and extract input constraints,
Tensor]JSFuzz performs type-aware random generation coupled
with dependency-aware refinement to create high-quality test in-
puts. These inputs are then subjected to differential testing across
various backends, including CPU, TensorFlow, Wasm, and WebGL.
Our experimental results show that TensorJSFuzz outperforms all
baselines in generating valid inputs and identifying bugs. In partic-
ular, TensorJSFuzz successfully detected 92 bugs, with 30 already
confirmed or fixed by developers, demonstrating its effectiveness
in improving the robustness of web-based DL frameworks.
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1 Introduction

Deep learning (DL) has gained widespread application in diverse
fields, including image classification [24, 26], natural language pro-
cessing [19, 38], and speech recognition [16, 20]. Traditionally, DL
models have been deployed using native deep learning frameworks
like TensorFlow and PyTorch, which are optimized for desktop and
server environments. However, with web applications increasingly
simplifying cross-platform portability issues and gaining popularity,
developers are integrating DL models into web applications more
often [22, 29, 32]. Web-based DL frameworks (e.g., TensorFlow.js)
are crucial for the development and deployment of such applica-
tions, offering a wide array of functional operators, and allowing
developers to deploy DL models directly within web browsers.
The quality and reliability of these web-based DL frameworks
are paramount, as they directly impact the overall performance and
dependability of web-based DL models and applications. Unlike
their native counterparts, web-based frameworks are constrained
by the inherent limitations of the browser environment, such as
restricted access to memory and hardware accelerators. To mitigate
these constraints, web-based DL frameworks employ a range of ac-
celeration mechanisms, including WebAssembly and WebGL, which
introduce new challenges for testing DL frameworks in the web en-
vironment. Compared to the testing of native DL frameworks, test-
ing web-based frameworks must account for the variability of web
environments and code styles. These include browser implementa-
tions, hardware variability, and the intricacies of web technologies
like WebAssembly, which presents both a performance benefit and
a source of potential bugs. As a result, existing DL fuzzers designed
for native DL frameworks cannot be directly applied to web-based
frameworks and may struggle to retain their original effectiveness.
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Operator Function Signature (Type Information)
Function Checking Code
(Value and Dependency Constraints)
| Invoking Kernel Function |
Backend [ cpu | [ wasm | [ webGL | [ Tensorflow |

Figure 1: The code structure of DL operator in TensoFlow.js

A key challenge in testing web-based frameworks is generating
high-quality test cases that thoroughly explore the logic of core
APIs. Specifically, DL operators (or APIs) often require inputs in the
form of high-dimensional tensors with complex interdependencies.
As a result, randomly generated inputs frequently fail the opera-
tor’s validation checks, limiting their ability to effectively test core
functionality. To address this, FreeFuzz [37] mines test cases from
open-source repositories. DocTer [39] uses rule-based approaches
to collect constraints from API function descriptions in the docu-
mentation. ACETest [34] specifically collects constraints from C++
code. However, these approaches often struggle to generate effec-
tive test cases due to unclear constraints, missing or inaccurate API
descriptions, or being tailored for native DL frameworks.

To address these challenges, we propose TensorJSFuzz, the first
fuzzer specifically designed for web-based DL frameworks, such as
TensorFlow.js. As shown in Figure 1, a typical web-based operator
consists of three key components: the function signature, input
validation (checking code), and a backend-specific kernel function.
Our goal is to generate inputs that bypass the validation checks and
thoroughly test the kernel function. To achieve this, TensorJSFuzz
infers the parameter types and the constraints on them, which are
critical for generating valid and effective test inputs.

Specifically, TensorJSFuzz begins by analyzing the Abstract Syn-
tax Tree (AST) [30] of the function signature to extract parameter
type information. Next, to identify dependency constraints between
parameters in the validation checks, TensorJSFuzz leverages the
capabilities of Large Language Models (LLMs) [13], utilizing their
understanding of code through in-context learning to extract these
constraints. Based on the inferred types and constraints, we design
a heuristic-based approach for input generation, which includes
type-aware random generation and dependency-aware input refine-
ment. To account for the multiple backend implementations used by
web-based frameworks, TensorJSFuzz also incorporates differential
testing across various backends (as shown in Figure 1), making that
inputs not only bypass validation checks but also trigger potential
inconsistencies between different backends.

We evaluated TensorJSFuzz on TensorFlow.js, where it success-
fully extracted 2,046 constraints from 187 selected operators. These
constraints included 1,426 type constraints and 620 dependency con-
straints. To assess the effectiveness of TensorJSFuzz, we compared
it against three representative baselines: a random input gener-
ator (Random), a native DL fuzzer (DocTer), and an SMT-based
approach (TensorJSFuzz-SMT). The experimental results show that
the TensorJSFuzz significantly outperforms the baselines in gener-
ating valid inputs and identifying bugs. Specifically, TensorJSFuzz
generated 71.83% valid inputs, compared to 36.05% for Random,
38.79% for DocTer, and 62.12% for TensorJSFuzz-SMT. Additionally,
TensorJSFuzz identified 64 unique bugs that neither Random nor
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function conv2d_<T extends Tensor3D|Tensor4D>(
x: T|TensorLike, filter: Tensor4D|Tensorlee
strides: [number, number]|numl|
pad: valldlsame\numbeﬂconv um ExpllcltPaddlng
dataFormat: 'NHWC'['N!
dilations: [number, number |num er [ 1],
dimRoundingMode?: 'floor’|'round’|'ceil’): T {

Function Signature
(Type Information)

conv_util.checkPadOnDimRoundingMode(‘conv2d', pad, dimRoundingMode);
const inDepth = dataFormat === 'NHWC' ? x4D.shape[3] : x4D.shape[1];
util.assert( inDepth === $filter.shape[2],
() => "Error in conv2d: depth of input (${inDepth}) must match * +
“input depth for filter $($M|er.shape[2]).‘);

Checking Code
(Value and Dependency|

Constraints)

const res = ENGINE.runKernel( Conv2D, inputs as unknown as
NamedTensorMap, atirs as unknown as NamedAttrMap) as T;
return res:}

Invoking Kernel
Function

i

Figure 2: The source code of tf.conv2d

DocTer were able to detect. In total, TensorJSFuzz uncovered 92
bugs, with 30 of them already confirmed or fixed.
In summary, this paper makes the following contributions:

e We present TensorJSFuzz, the first testing tool specifically de-
signed for web-based DL frameworks, representing a significant
advancement in ensuring the reliability and robustness of web-
based DL frameworks.

e We propose a novel approach to extract type and dependency con-
straints directly from the source code, addressing the limitations
of existing methods. Additionally, we introduce a constraint-
aware test generation method that is lightweight and highly
effective.

e We demonstrate the effectiveness of TensorJSFuzz through com-
prehensive comparative experiments with existing DL fuzzers.
Tensor]SFuzz successfully uncovered 92 bugs, with 30 already
confirmed or fixed.

e The source code and experimental data are publicly available
at [8] for further research and replication.

2 Background and Motivation

2.1 Preliminary

TensorFlow.js [18] is a leading web-based DL framework, enabling
seamless integration of DL models into web applications. It provides
a versatile platform for developing and deploying models directly
in web browsers. TensorFlow.js supports model training and infer-
ence on diverse backends, providing flexibility and performance
optimizations for different environments. The library comprises
various backends, including CPU [4], WebGL [7], Wasm [6], and
the TensorFlow [5]. Each backend caters to different hardware and
execution contexts, contributing to TensorFlow.js’s adaptability and
widespread use in web-based deep learning applications.

2.2 Motivation Example

The key insight of our approach that extracts constraints from
source code is from the structured code in web-based DL frame-
works. As illustrated in Figure 2, the source code of the tf.conv2d
operator comprises three key components: the function signature,
checking code, and the invocation of the kernel function.

The function signature explicitly defines the types for each pa-
rameter. For instance, the parameter x is designated as Tensor3D or
Tensor4D, indicating a tensor of rank 3 or 4. The checking code em-
ploys assertions or functions to check the syntactical and semantical
validity of parameters. A notable example from the checking code
in Figure 2 is the dependency between the parameters dataFormat,
x, and filter. If dataFormat is NHWC, then x.shape[3] must match
filter.shape[2]. Otherwise, x.shape[1] should equal filter.shape[2].
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Figure 3: Overview of Tensor]JSFuzz

3 Approach

Figure 3 presents an overview of TensorJSFuzz, which contains
three stages. The initial stage involves constraint extraction, where
TensorJSFuzz extracts two types of constraints from a DL operator’s
source code: (1) type information for each parameter, derived from
the function signature’s abstract syntax tree, and (2) dependency
constraints, extracted from the function body using LLMs. The type
information includes the structure, data type, rank, and enumerated
values of each parameter, while dependency constraints cover the
permissible range of parameter values and their interdependencies.

Based on the constraints, TensorJSFuzz aims to generate valid
inputs. Initially, TensorJSFuzz randomly generates inputs that align
with the extracted type information, ensuring type consistency.
These inputs are then refined and adjusted to meet the dependency
constraints, significantly enhancing the likelihood of input validity.

TensorJSFuzz further employs three test oracles to identify vari-
ous bug types, including crash, memory-related, and wrong compu-
tation bugs. Specifically, wrong computation bugs are detected by
differential testing across different backends. For memory-related
bug detection, particularly in the Wasm backend, TensorJSFuzz
utilizes AddressSanitizer.

3.1 Constraint Extraction

3.1.1 Type Information Extraction. The function signature pro-
vides detailed syntax information for each input parameter, such
as the data structure, data type, and enumerated values, which can
be used to constrain the input generation. Therefore, we design a
type information extractor to extract such type information from
the function signature. Specifically, for each DL operator, the type
information extractor first parses its function signature into an
abstract syntax tree (AST). This AST is a tree with multiple typed
nodes, where the root node represents the operator function and
the ‘parameters’ node encapsulates details about all parameters of
the operator. Each child node of the node ‘parameters’ represents
a parameter. Within each parameter node, there is a ‘type’ node
storing all the syntax details. The type information extractor subse-
quently retrieves syntax information from the ‘type’ node for each
parameter and refines it into our type information representation.
To facilitate the subsequent input generation phase, we categorize
the type-related constraints into the following five types:
e structure: the data structure that stores a collection of values for
the input parameter, such as tuple, array, and tensor.
e rank: the number of dimensions of a tensor/array.
o shape: the shape of the tensor/array.
o dtype: the data type, such as number, boolean, int, and string, of
the parameter or the element type of the tensor/array.
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o enum value: a set of valid values.

Figure 8 shows an example of extracting type information for the
parameters of tf.conv2d operator. The type information extractor
parses it into an abstract syntax tree (i.e., AST in Figure 8), where
the ‘parameters’ node and ‘type’ node are marked as the blue box
and green box, respectively. Following this, the extractor acquires
syntax information from the ‘type’ node for each parameter and
further refines it into type information based on categories. For
example, the obtained syntax information of parameter strides is
“[number, number]|number”, and the refined type information are
{structure:[Array, number], dtype: number, shape: [2]}.

3.1.2  Dependency Constraint Extraction. To ensure input validity,
knowing only the type information is insufficient, as the constraints,
such as value ranges and inter-parameter dependencies, can have
high influence in the input validity. For instance, parameters often
have specific valid value ranges. Moreover, their data type, rank, or
values may depend on other parameters. Such detailed constraints
are discernible only through an in-depth analysis of the source code
(i.e., the checking code). To capture this information, we introduce
a specialized extractor for extracting information about the value
range and parameter dependencies from the checking code.

Considering the complexity of code like tensor calculations and
diverse conditional checks, we leverage LLMs, known for their ex-
ceptional comprehension in both natural language processing and
code-related tasks [10, 11, 14, 28, 41]. In this work, ChatGPT [1]
was chosen for constraint extraction using a one-shot prompting
strategy. Figure 9 shows an example of this approach, where the
prompt includes a task description and specific example. This ex-
ample illustrates the expected output relative to the task.

Table 1 presents a selection of constraint examples extracted by
ChatGPT, covering four distinct types. The second row, for example,
highlights a rank constraint, specifying that the rank of the indices
parameter must be greater than or equal to the batchDims param-
eter value in the tf.gather operator. The third row illustrates a
shape constraint, where the fourth dimension of x must match the
third dimension of filter. Additionally, dtype and value constraints
are shown in the fourth and fifth rows, respectively, indicating
dependencies of one parameter’s dtype or value on another.

3.2 Input Generation

To generate diverse inputs that conform to the constraints. A direct
approach would involve using a Satisfiability Modulo Theories
(SMT) [15] solver to compute inputs on the extracted constraints.
However, existing works [27, 34, 36] have highlighted limitations of
SMT solvers in generating diverse inputs, as they typically produce
boundary values and face challenges in solving constraints related
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Table 1: Examples of constraints extracted by ChatGPT

Type Opterator Constraint
rank tf.gather indices_rank>=batchDims_value
shape tf.conv3d x_shape[4]==filter_shape[3]
dtype tf.add a_dtype==b_dtype
value tf.conv3d strides_value==1 or dilations_value==1

Algorithm 1: Type-aware Input Generation

Input :7: Type information of all parameters of operator
Output: RI: Randomly generated inputs

1 P := getParameters(7);

2 forp € P do

structure := randomSelect(7 — p — structure);

if isAtomicType(structure) then

if hasEnumValue(7 — p) then
| RI — p:=randomSelect(7 — p — enum_value);

o w oA W

else

L

<

dtype = randomSelect(7 — p — dtype);
RI — p := randomGenerate(dtype);

else
rank := randomSelect(7 — p — rank);
shape := randomSelect(7 — p — shape);
dtype = randomSelect (7" — p — dtype);
| RI - p = generate(rank, shape, dtype);

15 return RI;

to tensors, such as the high costs associated with solving constraints
on a tensor’s value. Therefore, we developed a lightweight and
heuristic-based method to generate valid inputs, which unfolds
in two primary steps: (1) type-aware input generation, and (2)
dependency-aware input adjustments.

3.2.1 Type-aware Input Generation. Leveraging the type informa-
tion extracted from the function signature (see Figure 8), Tensor]S-
Fuzz initiates the input generation process. This involves randomly
generating an input for each parameter while meticulously con-
sidering its type information. Algorithm 1 presents the details for
random input generation. Given the extracted type information
(i.e., 7) of all parameters, TensorJSFuzz first obtains the parameter
list (i.e., ) (Line 1). Next, it randomly selects the structure for each
parameter from the structure list specified in the type information
(Line 3). If the selected structure is atomic and the enumerated
values are specified in the type information, the parameter value
is randomly chosen from those values (Lines 5 to 6). Otherwise, it
chooses a dtype and generates a random value based on the chosen
dtype for the parameter with atomic structure (Lines 7 to 9). If the
selected structure is not atomic, TensorJSFuzz further selects the
rank, shape, and dtype for the parameter and randomly generates
a value based on them (Lines 10 to 14). Finally, we obtain a random
input that satisfies the type constraints (Line 15).

3.2.2 Dependency-aware Input Adjustments. To ensure that gener-
ated inputs satisfy dependency constraints, we introduce a dynamic
adjustment strategy that iteratively modifies inputs until all con-
straints are met. To achieve this, a parser capable of recognizing
the extracted constraints is necessary. We manually reviewed the
constraints gathered by ChatGPT and summarized them into a
simplified constraint syntax, as depicted in Figure 10. In this con-
text, the term variable refers to various parameter characteristics,
including rank, shape, value, or data type.
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Algorithm 2: Adjust

Input :C: A set of constraints on all parameters
RI: Randomly generated inputs
Output: CI: Adjusted inputs
1 CI :=RI;
2 forc e Cdo

3 if isLogicalExpression(c) then

4 if c.op = ‘or’ then

5 LR := Adjust({c.left},CI);

6 if LR = CI then

7 | Adjust({c.right},CI);

8 else if c.op = ‘and’ then

9 Adjust({c.left},CI);

10 Adjust({c.right},CI);

1 else if isCMPExpression(c) then

12 if notSatisfy(c, CI) then

13 LR := AdjustParam(c.lef't,c,CI);
14 if LR = CI then

15 | AdjustParam(c.right,c,CI);
16 return CI;

Function AdjustParam(exp, c, CI)
if isRank(exp) then

L updateValidRank(exp, ¢, CI);
if isDtype(exp) then

| updatevalidDtype(exp, c,CI);
if isShape(exp) then

| updatevalidShape(exp, c,CI);
if isValue(c) then

| updatevalidvalue(exp,c,CI);

return CI;

Our adjustment algorithm shown in Algorithm 2, takes as input
a set of constraints C and random inputs RI, producing adjusted
inputs CI likely satisfying the constraints. The algorithm functions
as a parser, interpreting the constraint syntax and applying nec-
essary modifications for each constraint CI (Lines 2 to 15). When
encountering an or logical expression (Line 4), the algorithm at-
tempts to adjust the left-hand side (Line 5) and, if unsuccessful
(Line 6), the right-hand side (Line 7). For and logical expressions,
both sides are adjusted (Lines 8 to 10). Note that expressions in-
volving NOT or ternary logic can be transformed into equivalent
expressions. For example, —(a > b) can be converted to a <= b.
The constraint a == b?c.type == int : c.type float can be
converted to (a == b A c.type == int) V (a # b A c.type == float).

For comparison expressions (Line 11) that do not satisfy con-
straints (Line 12), adjustments are made to the left-hand side (Line 13)
or the right-hand side (Line 15), depending on the types of the pa-
rameters involved. Based on the comparison in ¢, for rank types (e.g.,
indices_rank==1), TensorJSFuzz tries to modify the rank (Line 19) of

the parameter indices; for dtype or shape types (e.g., a_dtype==b_dtype),

it tries to alter the data type or shape (Line 21 and Line 23); and
for value types (e.g., stride_value==1), it directly changes the pa-
rameter value (Line 25), such that the constraints ¢ can be satis-
fied. These modifications are based on the left or right operators
of the comparison expressions. For instance, consider a random
input RI for the operator tf. conv2d. Suppose the values of param-
eters strides and dilations are [3,5] and [4,7], respectively. They
meet the type constraints but break the dependency constraint
strides_value == 1 or dilations_value == 1. An adjustment is
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necessary to make them comply, typically modifying strides or
dilations to [1,1].

It is important to note that, given the undecidability of the
constraint-solving problem, the heuristic-based method in Algo-
rithm 2 is not a perfect solver. Constraints that contain syntax
errors generated by the LLMs, unsupported syntax elements, or
adjustments that fail to resolve properly will result in the algo-
rithm returning the original, unadjusted inputs (as seen in Line 16
and Line 26). Consequently, some inputs may not be successfully
adjusted by Algorithm 2.

3.3 Test Oracle

To systematically capture bugs during testing, TensorJSFuzz incor-
porates the following three test oracles:

Memory Bugs: Utilizing AddressSanitizer [3], TensorJSFuzz de-
tects memory-related bugs within Wasm backend, a context where
memory safety is not guaranteed. AddressSanitizer is adept at iden-
tifying a spectrum of memory bugs, such as memory out-of-bounds,
memory leaks, and use-after-free errors, bolstering our capability
to uncover memory bugs.

Crash Bugs: We characterize crash bugs as any abrupt termi-
nations of the program, including unexpected exceptions, aborts,
and segmentation faults. Similar to previous work [37], we also
employ heuristic methods to filter the expected exceptions which
are typically syntax-related exceptions, caused by invalid inputs.

Differential Testing: For identifying logical bugs (Wrong Com-
putation Bugs) that do not disrupt execution, we conduct differ-
ential testing across four TensorFlow.js backends: CPU, WebGL,
Wasm, and TensorFlow. When the same input produces divergent
outputs from operators across these backends, a bug is suspected.
To account for minor discrepancies, which may arise from backend-
specific computational precision and are not considered bugs, we
apply the following metric:

N, 1A - Byl
N

where N is the total number of output tensor elements, and A;,
B; represent the i-th elements of tensors A and B, respectively.
A difference exceeding a predefined threshold indicates a poten-
tial wrong-computation bug. In this paper, to avoid false positives
caused by the natural and expected differences between different
backends, we set a larger threshold of 1,000.

dif ference =

4 Evaluation

To evaluate the effectiveness of TensorJSFuzz, we aim to answer
the following research questions (RQs):

RQ1: How effective is TensorJSFuzz in accurately extracting con-
straints from the source code of web-based DL frameworks?
How does TensorJSFuzz perform in generating inputs and
detecting bugs when compared to baselines?

What kinds of bugs can be detected by TensorJSFuzz?

RQ2:
RQ3:

4.1

Baselines. For a comparative analysis in our study, we selected
DocTer [39], the method most closely aligned with ours, which
extracts constraints from API function descriptions, as the baseline.

Experimental Setup
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We excluded ACETest because it is specifically designed for C++
code. To ensure a fair comparison, we extracted API descriptions
for TensorFlow.js operators from the official documentation, used
DocTer’s replication package to generate inputs, and integrated our
testing oracles into DocTer.

Furthermore, we implemented 2 additional representative base-
lines: 1) Random, a type-aware random fuzzer that recognizes pa-
rameter types but ignores dependency constraints. 2) TensorJSFuzz-
SMT, a variant of TensorJSFuzz, which translates constraints into
SMT formulas and leverages Z3 for generating random solutions.
Since Z3 lacks a built-in batch sampling function, we iteratively
add constraints to exclude previously obtained solutions, ensur-
ing diversity. After this step, TensorJSFuzz-SMT produces a batch
of unique solutions for the constraints. For parameters without
constraints, it generates random values. We excluded a baseline
without type information, as type awareness is essential for valid
inputs; without it, generating test cases is nearly impossible.

Environment. In our experiments, the model GPT-4 is used. To
manage the randomness of ChatGPT’s responses, we conducted
experiments with various parameter settings. Based on our expe-
rience, we selected the optimal parameter values: the parameters
top_p and temperature are set to 0.1 and 0.5, respectively. We tested
TensorFlow.js on the version 4.1.0, which defines 231 DL operators
in tfjs-core, divided into nine categories. Each operator was tested
through a headless Chrome browser, facilitated by Puppeteer [2].
Since the browser was opened and closed three times for each test
input across three backends: CPU, Wasm, and WebGL, the aver-
age processing time was approximately 3 seconds per input. To
effectively manage the time constraints, we followed the approach
of [39] and limited each fuzzer to produce 1,000 test inputs per
operator. To mitigate the impact of randomness, each experiment
was repeated three times during testing, and the average values of
these runs were used for comparative analysis.

All experiments are conducted on a high-performance worksta-
tion equipped with a 64-bit Ubuntu 20.04 LTS system, 32GB RAM,
and two 18-core 2.3GHz Intel Xeon E5-2699 CPUs.

4.2 ROQ1: Effectiveness of constraint extraction

4.2.1 The number of constraints. Table 2 displays the number of
constraints extracted by DocTer and TensorJSFuzz. The constraints
extracted by Tensor]JSFuzz are composed of two main types. The row
Type Info shows constraints related to type information. Meanwhile,
Den. Constraints represents the number of dependency constraints
identified, quantified as the total count of individual extracted ex-
pressions. Columns 3-6 indicate the number of constraints related to
each parameter. Given that rank equates to the length of the shape,
rank-related constraints are grouped under the shape category.
TensorJSFuzz extracts a total of 2,046 constraints, nearly four
times more than DocTer, which is 538. TensorJSFuzz is more ef-
fective than DocTer, especially in terms of the shape and value
properties. Structure-related constraints can be expressed in simple
natural language, so DocTer can also easily obtain such constraints
from the documents, which leads to similar constraint numbers of
structure in the table. In particular, TensorJSFuzz extracts 620 de-
pendency constraints, whereas most of the constraints extracted by
DocTer are limited to type constraints due to its lack of code-level
analysis. Additionally, we did not observe any structural constraints,
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Table 2: Number of extracted constraints

‘ Constraint Type ‘ dtype ‘ structure ‘ shape ‘ value ‘ Total

DocTer | Type&Den. | 130 | 414 | 165 | 49 | 538
Type Info 423 500 327 | 176 | 1426

TensorJSFuzz | Den. Constraints 233 0 232 155 620
| Total | 656 | 500 | 559 | 331 | 2,046

Table 3: Quality of dependency constraints

dtype shape value Total
Precision(%) 81.9 96.9 94.9 90.9
Recall(%) 945 942 977 952
F1(%) 87.8 95.5 96.1 93.3

as TensorFlow.js does not perform structure validation in its check-
ing code. These results demonstrate that TensorJSFuzz is capable
of automatically extracting more comprehensive constraints, sig-
nificantly reducing the need for manual effort.

4.2.2  The quality of extracted constraints. Type information comes
from function signatures via static methods and is precise. Mean-
while, ChatGPT provides dependency constraints. To assess the
quality of these dependency constraints, we randomly selected 20%
(95 parameters) for manual verification. This verification was con-
ducted independently by this paper’s three authors and resulted in
unanimous agreement. For each parameter, we annotated specific
constraints based on the source code to establish a solid ground
truth. The constraints extracted by ChatGPT were then compared
against this benchmark. In the verification, we employed standard
metrics including precision, recall, and the F1 score. Precision rep-
resents the percentage of correctly extracted constraints (those
matching the ground truth) out of all extracted constraints. Recall
is the percentage of correctly extracted constraints out of the total
ground truth constraints. The F1 score is the harmonic mean of
precision and recall.

Table 3 displays the precision, recall, and F1 score for each cate-
gory of dependency constraint. Overall, ChatGPT achieves a high
precision (90.9%), recall (95.2%), and F1 score (93.3%) across all three
categories. ChatGPT is more effective in extracting shape/value-
related dependency constraints with an F1 score over 95%. It is less
effective in dtype-related dependency constraints. The reason is
that ChatGPT sometimes misinterprets “Tensor” as data type. For
instance, it might extract a constraint like “x_dtype==Tensor”. This
does not affect the generation of valid inputs, as for these kinds of
dependency-free dtype constraints, TensorJSFuzz adheres to the
extracted Type Info.

Answer to RQ1: Compared to DocTer, TensorJSFuzz is capable
of extracting more constraints, and its precision and recall in
constraint extraction are satisfactory.

4.3 RQ2: Comparison with existing methods

4.3.1 The effectiveness of generating inputs. Generating valid in-
puts is essential for passing a DL operator’s validity checks. Since
manual input validation is impractical, we follow prior work [39]
and consider inputs that terminate normally—i.e., without excep-
tions, as a reasonable approximation of validity. An input is deemed
valid if it successfully terminates on any backend. We assess the
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Figure 4: Comparison between TensorJSFuzz and baselines
regarding pass rate and bug distribution

ratio of passing inputs generated by each tool, i.e., pass rate. Note
that DocTer can be configured to generate inputs that violate con-
straints. For a fair comparison, we set the mutation_p in DocTer to
0, ensuring only generates inputs that adhere to constraints.

Figure 4a shows the input pass rates for each tool. Notably, Ten-
sorJSFuzz achieves a 71.83% pass rate, surpassing Random (36.05%),
DocTer (38.79%), and TensorJSFuzz-SMT (62.12%). This marks an
increase of 199.25% over Random and 185.17% over DocTer, largely
due to TensorJSFuzz’s efficient extraction of dependency constraints.
Moreover, despite TensorJSFuzz and TensorJSFuzz-SMT utilizing
identical constraints, TensorJSFuzz records a higher pass rate. This
discrepancy arises because TensorJSFuzz-SMT does not address
constraints related to tensor values, the number of elements, or
loop constraints due to their computational cost [34]. Properties
corresponding to these unresolved constraints are generated ran-
domly. These findings underscore the proficiency of TensorJSFuzz
in generating valid inputs that effectively test core functionalities.

Further investigation into invalid inputs generated by Tensor]S-
Fuzz revealed some inaccuracies in constraints extracted by Chat-
GPT. For example, it fails to extract the implicit constraint a_shape ==
b_shap in the operator tf.add, which are not checked in the JavaScript
source code. Additionally, some invalid inputs stem from our syn-
tax parsing’s limitations. Specifically, certain complex scenarios,
like array range indexing (e.g., mask_shape == tensor_shape[axis :
axis+mask_rank]) and data structure parameters (e.g., HTMLVideoEle-
ment), were not fully supported in TensorJSFuzz.

4.3.2 The effectiveness of detecting bug. We conducted a compara-
tive analysis of TensorJSFuzz against all baselines for bug identi-
fication. Aligning with DocTer’s optimal settings, which involve
parameters like optional_ratio and mutation_p, we evaluated differ-
ent configurations on a randomly selected 10% subset of operators
to find the best one. The configuration that yielded the best results
in our tests set optional_ratio to 0.2 and mutation_p to 0.4.

Table 4 shows the number of bugs detected by each tool. The
column 2-4 indicates the average total number of bugs found in
each backend. We can see that TensorJSFuzz uncovered 89.67 bugs
across the four backends. Notably, TensorJSFuzz outperformed each
baseline, Random(24.67), DocTer(32.34), and TensorJSFuzz-SMT
(68.00), in every backend.

On investigating the bugs that DocTer and Random failed to
identify, we attributed this to their inability to extract complex
dependencies. For instance, both Random and DocTer struggled to
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Table 4: The number of bugs detected by different tools
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Table 5: Average time to find the first bug

Backend ‘ CPU ‘ Wasm ‘ WebGL ‘ Tensorflow ‘ Total
Random 6.00 7.67 7.67 3.33 24.67
DocTer 7.33 9.67 10.67 4.67 32.34
TensorJSFuzz-SMT | 14.67 29.67 14.33 9.33 68.00
Tensor]JSFuzz 22.33 | 36.67 19.00 11.67 89.67

‘ Tensor]SFuzz ‘ Tensor]SFuzz-SMT ‘ DocTer ‘ Random

290.75 415.75 687.65
14.54 34.64 34.38

809.32
41.20

#Inputs
Times(min)

Table 6: Distribution of detected bugs by TensorJSFuzz

identify dependencies between parameters like x and filter in con-
volution operators, as outlined in Section 2. This led to only 1-2 out
of 1000 inputs passing checks, greatly reducing test effectiveness.
However, for the same constraints, TensorJSFuzz-SMT detects fewer
bugs than TensorJSFuzz because the generated inputs are not di-
verse enough. We observed that TensorJSFuzz-SMT often generates
boundary values, even when additional constraints are introduced
after each iteration to encourage more diverse inputs. For instance,
in the case of tf.conv3d, among the 1,000 generated inputs, tensor x
had only 29 unique shapes. Additionally, variations in these shapes
were limited to the first and last elements, resulting in shapes re-
sembling “[,1,1,1,]”. Comparatively, TensorJSFuzz achieves higher
diversities, for example, tensor x had 999 unique shapes in the case
of tf.conv3d, which explore space of valid input more adequately.
These findings underscore TensorJSFuzz’s superior performance
in bug detection, attributed primarily to its effective extraction of
dependency constraints and valid input generation.

We also analyze the distribution of bugs found by each tool. As
seen in Figure 4b, these tools find different bugs. Note that here we
count the total number of bugs detected across all repetitions. For
example, TensorJSFuzz can find all bugs found by TensorJSFuzz-
SMT since they generate inputs using the same constraints. 64, 15,
and 2 unique bugs are found by TensorJSFuzz, DocTer, and Ran-
dom, respectively. This is due to the differences in their respective
methods of extracting constraints. Random and DocTer miss 68 and
75 bugs found by Tensor]JSFuzz, respectively. This is because they
cannot extract the fine-grained constraints. TensorJSFuzz misses
4 bugs found by Random due to the randomness of the input gen-
eration process. DocTer found some unique bugs because it can
generate some inputs that violate constraints to test the checking
code of DL operator. Differently, TensorJSFuzz mainly generates
valid inputs conforming to constraints. However, Tensor]JSFuzz still
detects more bugs than DocTer, highlighting the importance of
generating valid inputs.

Additionally, we further compared the average time each tool
takes to discover the first bug for each operator. Moreover, we
recorded the input ID that triggered the first bug, indicating the
number of inputs needed to trigger the first bug. The results are
presented in Table 5. We can observe that DocTer and Random take
more than twice the time compared to TensorJSFuzz to discover
the first bug. Moreover, on average TensorJSFuzz only needs to
generate 290.75 inputs to discover a bug, while TensorJSFuzz-SMT,
DocTer, and the Random require 415.75, 687.65, and 809.3 inputs,
respectively. These results further indicate the TensorJSFuzz is more
efficient in detecting bugs.

Answer to RQ2: TensorJSFuzz generates more valid inputs
than all baselines. Moreover, TensorJSFuzz demonstrates a no-
table advantage in both the efficiency and effectiveness of bug
detection over all baselines.
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#Bugs (#Wrong-computation, #Crashes, #Memory) ‘ Total ‘ Confirmed
cPU | | WebGL | (Fixed)
23(8/15/0) | 37(10/2/25) | 20(8/12/0) |

Tensorflow ‘ ‘

124/8/0) | 92 |

‘Wasm

30(11)

4.4 RQ3: Bug Analysis

We further performed an in-depth analysis to characterize the bugs
we detected. Table 6 presents detailed statistics about the bugs
found by TensorJSFuzz. The number of wrong-computation bugs,
crash bugs, and memory bugs are shown in “()" of the column #Bugs.
We can observe that TensorJSFuzz detected 92 bugs in total (with
30 already confirmed as previously unknown bugs), and 11 of them
have been fixed by the developers to date. The unconfirmed bugs
are reproducible and waiting for the response of the developers.

The 92 bugs include 30 wrong-computation bugs, 37 crash bugs,
and 25 memory bugs, demonstrating the effectiveness of three test
oracles. Specifically, we can observe that most wrong-computation
bugs (26/30) are distributed in the backend CPU, Wasm, and We-
bGL. 25 memory bugs are identified in the Wasm backend, respec-
tively. No memory bugs are discovered in the CPU, WebGL and
TensorFlow backends, which mainly arises from the absence of a
dedicated memory bug oracle. These results indicate considerable
inconsistencies in the implementation logic of TensorFlow.js opera-
tors across the four backends. In particular, the implementations
for the web-specific backends, i.e., CPU, Wasm, and WebGL, should
align with the mature Tensorflow backend, which invokes the same
tensorflow.so as the DL framework TensorFlow.

In addition to detecting the three main categories of bugs men-
tioned above, we also uncovered 41 inconsistent behaviors between
the Tensorflow backend and the other three web-specific backends.
These discrepancies arise from variations in the supported parame-
ter values. For example, when the parameter pad is set to a number,
the operator of Tensorflow backend returns an exception with “TF
Backend supports only “valid’ and ‘same’ padding while padding was
NUMBER” while other backends return an output tensor. These
inconsistencies, while not classified as bugs in our study, highlight
shortcomings in the cross-platform deployment of TensorFlow.js.

Case-Study 1 (Memory Bug): Figure 5 shows the code that
triggers a memory bug in the operatortf. conv2d. When running it
in the Wasm backend, a memory error occurred with the message
“requested allocation size 0xd55559f0 exceeds the maximum supported
size of 0xc0000000”. Debugging revealed that a negative pad was
converted from number to size_t in the Wasm-specific kernel wasm-
Conv2d, becoming 4294967292, which caused indirection_buffer_size
to exceed the allocation limit of xnn_reallocate_memory. This bug
has been confirmed by developers. Since parameters x, filter, and
dataFormat must meet the dependency constraint DataFormat ==

NHWC?x_shape[3] = filter_shape[2] : x_shape[1] = filter_shape|[2],

Random and DocTer struggle to generate valid inputs and thus fail
to detect this bug.
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var x=tf.ones([1,16,7,4]);

var filter =tf.fill([17,13,4,4],3,"float32");

var prediction = await tf.conv2d(input,filter,[25,24],-4,"NHWC",[1,1],"ceil");
Target API: tf.conv2d |
|Catch: requested allocation size exceeds maximum supported size.

Figure 5: The example of memory bug

var x=tf fill([1,15,16,8],32,"float32");

var df=tf fill([9,10,8,11],3,"float32");

var pf=tf.fill([1,1,88,6],3,"float32");

const result = tf.separableConv2d(input,df,pf,1,"valid", [0,2],"NHWC");
wasm:RuntimeError: null function or function signature mismatch
Tensorflow:Tensor[2280960,2280960.....]

'Target API: tf.separableConv2d
'Catch: Crash/Inconsistent between backends

Figure 6: The example of crash bug

var x = tffill([1,3,3,3,3],3,"float32")

var result = tf.avgPool3d(x,[1,2,2], 1, 3,"floor","NDHWC");
/I CPU result: [[[[NaN,NaN,NaN],[NaN,NaN,NaN],[NaN,NaN,NaN]....]]]
/I Tensorflow result: [[[[[0,0,0],[0,0,0],[0,0,0].....]11]

| Target API: tf.avgPool3d
| Catch: Inconsistent between backends

Figure 7: The example of wrong-computation bug

Case-Study 2 (Crash Bug): Figure 6 shows a crash bug in
tf.separableConv2d. When running the code snippet on the back-
end Wasm, the crash is triggered with the message “RuntimeEr-
ror: null function or function signature mismatch”. This crash bug
has been confirmed by the developers who replied “..I was able
to replicate the issue. We’ll investigate further and update soon...”.
Since parameters x, depthwiseFilter, and pointwiseFilter need to
satisfy the dependency constraint pointwiseFilter_shape[2]
x_shape[3] « depthwiseFilter_shape[3], making Random and Doc-
Ter unable to detect the bug.

Case-Study 3 (Wrong-Computation Bug): Figure 7 shows a
wrong-computation bug in tf.avgPool3d. When running the code
snippet on the backend CPU, it returns a tensor with all elements
set to NaN. However, the backend WebGL returns a tensor with all
elements set to 0. The developers have fixed this bug by modifying
the CPU-specific kernel function to avoid dividing zero when com-
puting averages. All of the methods can detect this bug as it does
not require complex dependency constraints.

Answer to RQ3: TensorJSFuzz detected 92 real-world bugs in
total, 30 of which have been confirmed or fixed by developers.

5 Related Work
5.1

Model-level fuzzers focus on generating various DL models for
the target DL framework. CRADLE [31] is the first work to find
and localize bugs in DL frameworks, which detects inconsisten-
cies by running existing models on multiple backends of Keras.
LEMON [9] and AUDEE [23] further extend the idea of CRADLE
to generate more diverse models. Muffin [21] generates DL mod-
els for testing DL frameworks in both the inference and training
phases. Recently, NNSmith [27] tested DL compilers by generating
diverse yet valid DNN models. These works all focus on fuzzing the
native DL frameworks (e.g., TensorFlow and PyTorch). Different
from them, we employ a more fine-grained operator-level fuzzing
technique to test each operator of the web-based DL framework,
e.g., TensorFlow.js.

Model-level Fuzzing of DL Framework

3412

Lili Quan et al.

5.2 Operator-level Fuzzing of of DL Framework

Operator-level fuzzing focuses on testing individual operators of
the DL framework, which can test more operators than model-
level fuzzing. FreeFuzz [37] mines inputs from open-source code
snippets and then apply random mutations to generate diverse in-
puts. Similarly, SkipFuzz [25] employs an active learning approach,
inferring the input constraints through the fuzzing process. Deep-
REL [12] and EAGLE [35] further leverage differential testing on
relational operators (e.g., operators that always return the same
results/statuses given the same inputs) to cover more operators.
DocTer [39] extracts the input constraints from API documentation
and then generates inputs based on these constraints. ACETEST [34]
extracted constraints from the code of the low-level DL operator
specifically implemented with C/C++. More recently,VFuzz [40]
utilizes automatic differentiation as the test oracle for more effec-
tive fuzzing. Different from the above model- and operator-level
fuzzers, [17] apply modern Large Language Models (LLMs) [14] to
generate diverse DL API sequences for testing.

While the aforementioned works are all effective in discover-
ing bugs in DL frameworks, none of them targeted the web DL
frameworks (e.g., TensorFlow.js). Different from them, firstly, we
target the web-based DL framework, i.e., TensorFlow.js, which is
different from native libraries in terms of the implementations of
DL backends and the execution environments. Secondly, previous
fuzzers extract input constraints from API documentation or infer
valid input from open-source code snippets. We utilize the capabil-
ities of Large Language Models (LLMs) to comprehend code and
extract the dependency constraints via an in-context learning mech-
anism. Thirdly, We designed a new Oracle for the Wasm backend of
TensorFlow.js, leveraging AddressSanitizer [33] to detect memory-
related bugs, considering the characteristics of the web-based DL
framework.

6 Conclusion

This paper presents TensorJSFuzz, the first fuzzer specifically de-
signed for testing web-based DL framework. TensorJSFuzz excels
in extracting high-quality constraints, deriving type-related con-
straints from function signatures and dependency constraints di-
rectly from the function code. These constraints allow TensorJSFuzz
to generate valid inputs that bypass syntactical checks, improving
the effectiveness of testing within the web environment. Our eval-
uation demonstrates that TensorJSFuzz significantly outperforms
existing baselines in detecting bugs both effectively and efficiently.
It successfully uncovered 92 bugs, of which 30 have already been
confirmed or fixed by developers, highlighting its practical impact
on improving the robustness of web-based DL frameworks.
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Appendix

A.1 Example of Extracting Type Information

Figure 8 shows an example of extracting type information for the
parameters of tf.conv2d operator. The type information extractor
parses it into an abstract syntax tree (i.e., AST in Figure 8), where
the ‘parameters’ node and ‘type’ node are marked as the blue box
and green box, respectively. Following this, the extractor acquires
syntax information from the ‘type’ node for each parameter and
further refines it into type information based on categories. For
example, the obtained syntax information of parameter strides is
“[number, number]|number”, and the refined type information are
{structure:[Array, number], dtype: number, shape: [2]}.
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Function Signature

function conv2d_

<T extends Tensor3D|Tensor4D>(
x: T|TensorLike,
filter: Tensor4D|TensorLike,
strides: [number, number]|number,

/lcode implementations

[number

I 1

Tensor3D ITe 4D

operator: tf.conv2d l l ’ l ensor l

X ) [TensorLike] [[number,number]
structure: [Tensor, TensorLike]

Tensor:
Zankdied Parameter Type
strides: Information
structure: [Array,number]
Array:
dtype: number
shape: [2]

Figure 8: The example of extracting type information

A.2 The Prompt for Querying ChatGPT

Figure 9 illustrates an example prompt for querying ChatGPT,
which consists of a task description and a specific example. This
example defines the expected output for the given task. For instance,
the extracted expression strides_value == 1 or dilations_value ==
1 indicates that either strides or dilations must be 1.

Descriptions:

Act as a professional software engineer specializing in deep learning libraries. Your task is

to meticulously analyze a given JavaScript-based deep learning library code, identify and

extract all constraints on the parameters. These constraints are critical for ensuring the

successful execution of the kernel function within the given code. Once identified,

articulate these constraints in the form of clear, concise, and precise mathematical
expressions or logical statements.

To guide your analysis, consider aspects such as parameter types, dimensional
requirements, value ranges, and any preconditions or postconditions related to the
parameters.

Example:

Given the following source code for conv2d operator, the output should systematically list
constraints on the parameters:

>>>conv2d_sourcecode<<<

Expected output:

strides_value==1 or dilations_value==1;

(dataFormat_value=="NHWC') ? x_shape[3]==filter_shape[3]:x_shape[1]==filter_shape[3];
dimRoundingMode_value==null? pad_dtype==string : pad_type==int ...

Task:

Now, apply this methodical approach to the following code. Extract and present the
constraints of parameters in a clear, structured format, akin to the provided example.

>>>conv3d_sourcecode<<<

Figure 9: The prompt for querying ChatGPT

A.3 Backus-Naur Form (BNF) Grammar of
Constraint

Figure 10 illustrates the BNF grammar of LLM-extracted constraint,
enabling a parsing algorithm to convert unstructured strings into a
structured format. To define this grammar, we analyzed a subset
of extracted constraints to identify common operators (e.g., arith-
metic, logical, comparative) and parameter attributes (e.g., rank,
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shape, value). Based on this, we formulated a BNF grammar and
developed a parsing algorithm, refining both iteratively through
manual analysis of unparsable cases. This process continued until
all valid constraints were successfully parsed. While our grammar
captures common patterns, it remains adaptable for future updates
as new constraints or operators emerge.

<constraint> ::= <expression>
<expression> ::= <term>

| <expression> <operator> <expression>

|'(" <expression>"')'

| <expression> ?< expression >: <expression>
<term> ::= <value> | <variable>
<value> ::= <number> | <string> |<int> | <float>
<operator> ::= <arithmetic_operator> | <logical_operator> | <comparison_operator>
<arithmetic_operator> + %
<logical_operator> ::= ‘or' | ‘and' | 'not'
<comparison_operator> ;1= '<' | '>' | '>="| '<=" | '==" | 'I='

Figure 10: The constraint BNF grammar

A.4 Generalizability of Constraint Extraction
Across LLMs

Our method extends beyond GPT and applies to other LLMs. Depen-
dency constraint extraction is not inherently difficult for existing
LLMs, as these constraints are often explicitly defined in exception
handling or validation code. Thus, the task primarily relies on an
LLM’s ability to parse and understand code structure rather than
on advanced reasoning.

To validate this, we conducted additional evaluations by incorpo-
rating additional LLMs, and the results are summarized in Table 7.
This demonstrates the robustness and broad applicability of our
constraint extraction method.

Table 7: Performance of Different LLMs in Extracting Con-
straints

LLMs GPT-4 gpt-3.5-turbo llama3.2-3b Qwen2.5-coder-32B-instruct ~ Phi-3.5-mini-instruct

Accuracy(%)  90.9 89.7 88.6 90.3 90.5

While fine-tuning could enhance extraction accuracy, we did
not include it in this paper, as the task primarily relies on parsing
rather than complex reasoning. Our method already achieves 90%
accuracy without fine-tuning, highlighting a trade-off between cost
and performance.

A.5 Generalizing to Other Web-Based DL
Frameworks

Our approach can be generalized to other web-based DL frame-
works, but several challenges remain: A primary challenge is source
code availability. For instance, we could not test ONNX_js due to
its lack of a public API, which prevents constraint extraction. Addi-
tionally, a DL framework’s code style can affect extraction accuracy.
For frameworks with significantly different styles, LLM prompts
may need adjustment, or fine-tuning may be required to ensure
accurate extraction.
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